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Abstract 

Computers are increasingly employed to monitor the performance of complex systems.  

An important issue is how to evaluate the performance of such monitors.  In this article 

we introduce a three-dimensional representation that we call a “waterfall chart” of the 

probability of an alarm as a function of time and the condition of the system.  It combines 

and shows the conceptual relationship between the cumulative distribution function of the 

run length and the power function.  The value of this tool is illustrated with an application 

to Page’s one-sided Cusum algorithm.  However, it can be applied in general for any 

monitoring system. 

Introduction 

It is important to surround complex systems with monitoring schemes that can 

indicate when a system malfunctions.  This article considers the problem in relation to the 

auto industry’s legally mandated “on-board diagnostics” (OBD), now required for all 

new automobiles sold in the US, Canada and Europe (see e.g. CARB, 1997) to detect 

malfunctions in the powertrain as precursors of potential emissions problems.  However, 

the issues discussed have wide applicability outside this area.   
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In this article we first review general concepts for monitoring dynamic systems as 

a generalization of standard (static) monitoring schemes used for industrial quality 

process control, see e.g. Box et al (2000).  We then discuss how to evaluate the 

performance of monitors, focussing particularly on the waterfall chart, which is a three-

dimensional representation simultaneously showing the power and the cumulative run 

length distribution.  The concept is illustrated by applying it to a standard one-sided 

Cusum chart.  This is followed by a general discussion. 

What is a Dynamic Monitoring System? 

Static process monitoring is a well-known concept discussed extensively in the 

industrial quality control literature under the umbrella of Statistical Process Control 

(SPC).  To be consistent with the engineering control literature we will call the system to 

be monitored the plant.  In quality control context, it is typically assumed that the plant is 

normally in a state of statistical control, specifically that the plant generates data 

, that vary independently with a fixed variance about a fixed mean ntyt ,...,1, = 2σ µ .  

The purpose of monitoring is to detect any deviation from this stable state.   

In our application the plant does not necessarily have a fixed mean.  Thus we 

wish to design a monitoring system that will show whether the plant is in a satisfactory 

condition or is malfunctioning while taking account of its dynamic behavior.  For 

example, consider the cooling system (plant) in a car.  Despite the various feedback 

control systems the cooling water temperature is expected to rise as the car makes its way 

over a mountain.  However, if the temperature suddenly increases more than should be 

expected, it may be a sign that the cooling system is malfunctioning.  A dynamic monitor 

will continuously sample temperature data and compare these readings with calculated 
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temperatures based on a model for a normally functioning car under these driving 

conditions.  Such a dynamic monitor will therefore be able to detect subtle malfunctions 

of the cooling system. 

In Figure 1 we exemplify the concept of a dynamic monitoring in the context of 

an on-board diagnostic for automobiles.  However, the same principles apply to any 

monitoring system, dynamic or static.  The plant receives inputs ),,,( 21 ′= ktttt xxx Kx  

and produces outputs ),,,( 21 ′= mtttt yyy Ky  sampled at discrete, equi-spaced time 

intervals.  Thus in automotive applications the plant could for example be the intake 

manifold including the feedback systems already in the plant.   

A model module  where ),( θxf θ  is a vector of model parameters accepts data x  

on the input to the plant and estimates as closely as possible its expected performance 

when functioning properly.  The model could be empirical, or it could be based on 

physical theory, a neural network or some combination of these.  Outputs  from the 

plant are compared with those from the model and residual differences 

t

)

ty

,( θtt f x= ty −r  

are computed.  If the system functions correctly and the model of the system is an 

appropriate time series, the residuals will form a stationary series of random noise.  A 

signal contained in such noise can indicate that the system is malfunctioning.  To trigger 

an alarm, the residual noise is processed by an appropriate algorithm.  For example, if the 

signal expected is a step change then a Cumulative Sum (Cusum) is appropriate.  

However, if a trend or gradual chance is expected then an Exponentially Weighted 

Moving Average (EWMA) algorithm should be used.  By using the Cuscore concept, see 

Box and Luceno (1997), algorithms may be developed that are designed to detect other 
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malfunction patterns.  When the algorithm detects a signal, the operator is notified by 

turning on the Malfunction Indicator (MI).  A decision to turn on the MI is made by the 

decision module, which typically contains a few adjustable parameters that can be used to 

fine-tune the monitor.  The decision module together with the model module constitutes 

the monitoring system.  
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Figure 1.  A conceptual model of a dynamic monitoring system.   

Type I and II Decision Errors 

Whether the residuals show sufficient signs of a signal to warrant a malfunction 

indication is complicated by the fact that the inputs and the plant itself are subject to 

random variations, measurement errors and model misspecification.  Thus no matter how 

well we design the decision module, false alarms occur occasionally, turning on the MI 
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when it shouldn’t.  This is called a Type I decision error.  The possibility that the MI is 

not turned on when it should be is called a Type II decision error.   

Both types of errors can reduce the practical usefulness of a monitor.  In the 

automotive context a false alarm or a Type I error means that the owner is required to 

repair the car when nothing is wrong.  This can lead the owner to ignore the MI even 

when something is wrong.  Alternatively failure to detect a valid alarm implies a Type II 

error where the vehicle may be malfunctioning without the operator being appropriately 

notified.   

If monitors have high error rates, it may be difficult to enforce the law.  Therefore 

we need monitoring systems that are sufficiently quick to respond to real malfunctions, 

thereby avoiding a persistent Type II error, while at the same time minimizing the 

probability of a Type I error or false alarm.  This requires good predictive models and 

efficient decision procedures using appropriate performance criteria.  Before discussing a 

general approach to evaluating the performance of a given monitoring procedures we 

need to consider the condition of the plant.   

The Condition of the Plant 

The idea that a monitored systems (plant) is either “good” or “bad” is too 

simplistic.  Cars start wearing out immediately after they come off the production line.  

Thus we need to consider a continuum of conditions, s as illustrated in Figure 2.  In the 

automotive context it has become standard to use the following terminology.  At the left 

hand side of the continuum, we have what we denote “as new” and at the other extreme, 

“hard failure”.  Somewhere in between “as new” and “hard failure” we define regions of 

“good” and “bad” separated from each other by “worst acceptable” (w.a.) and “best 
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unacceptable” (b.u.) conditions.  There may also be a “no-man’s land” in between w.a. 

and b.u. that is not defined as either good or bad as we will explain.   
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Figure 2.  The Range of Possible Conditions of the System. 

The Run Length Distribution 

The key requirement for a monitoring system is that it is sufficiently quick to set 

an alarm when the system is “bad”, but hardly ever responds as long as the system 

remains “good.”  Expressing this in terms of probabilities, when the system is bad we 

want a relatively high probability that the alarm will be turned on within a short time 

interval.  However, if the system is good, we require that over a given long time interval 

the probability of an alarm is very small.  This explains the need for the “undefined 

region” in Figure 2.  If w.a. = b.u., that condition would both be good and bad, and a 

monitor would have to meet conflicting requirements for a plant in such conditions.   

Now let the probability that an alarm will be triggered at least once in the time 

interval  when the plant is in state s be ( ]t,0 { }stT ≤atAlarmPr  and the intervals 

between samples be the unit of time.  The probability is a function of t and s.  Thus for a 

given system, we may in principle plot the probability of an alarm 

 }|atAlarmPr{),( stTstf ≤=   (1) 
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as a function of t and s, hence producing a three dimensional surface which is shown in 

Figure 3 and discussed later.  Because of its appearance we call this a “waterfall chart”.   

Page’s One-sided Cusum Algorithm 

We now briefly discuss the Cusum algorithm that will be used to illustrate the 

waterfall chart and its value in evaluating certain properties of the run length distribution.  

For a series of observations {  with mean }tr µ , a Cusum monitoring scheme in its 

simplest form is a cumulative sum Q  of deviations t ,1 τ−r  K,2 τ−r  from the process 

target value τ  

∑
=

−=
t

j
jt rQ

1
)( τ . 

In the dynamic monitoring context,  will be residuals obtained by subtracting model 

generated predictions from real observations.   

tr

A monitoring scheme can be constructed by plotting successive observations of 

.  If the process has a mean equal to the target tQ τµ = , the Cusum will behave like a 

random walk fluctuating around zero.  However, if µ  suddenly increases even by a small 

amount,  will contain an increasing deterministic component and plots of Q  against t 

will increase more or less linearly with a slope of 

tQ t

τµδ −= .  Similarly, if the mean 

decreases then  will start to decrease.  Thus the Cusum can be used to detect any 

departures of the mean from a given target value.   

tQ

In some applications, it is known that an unfavorable departure from status quo 

will be in a particular direction.  In these cases, the monitoring system is specifically 

aimed at detecting shifts in this one direction and it is convenient to use a Centered 
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Cusum.  Suppose for example that 1µ  is the best unacceptable (b.u.) condition of the 

plant and that τµ −= 1d .  Then a centered one-sided Cusum statistics would be defined 

as  

∑
=

−−=
t

j
jt drQ

1

* )2/( τ . 

The centered Cusum is essentially a handicapped score.  When the mean of the 

data is on target the quantity d/2 will produce a downward trend in Q .  Thus when Q  

falls below zero, it is automatically set to zero.  However, when Q  increases and 

exceeds a certain threshold, which we denote by h, an alarm is triggered.  For computer 

implementation this algorithm is best put into practice by sequential calculations of  

*
t

*
t

*
t

}.2/,0max{ 1
+
−

+ +−−= ttt QdrQ τ  

The Cusum algorithm was invented by Page (1954) and has since been studied 

extensively.  It is particularly well suited to monitoring processes where a malfunction 

corresponds to a deviation from the mean in a specific direction.   

The run length is defined as the time it takes before an alarm is sounded.  It has 

been the tradition to design a monitoring scheme by selecting the detection threshold, h, 

after considering the resulting Average Run Length (ARL) for a good system and a bad 

system.  However, as Page (p. 101) warned, the ARL is only one of several possible 

measures of the performance of a monitor.  To understand the behavior of a given system 

it is necessary to consider the entire run length distribution.  In particular for a good 

system with a large ARL the run length distribution is approximately exponentially 

distributed and consequently a large percentage of false alarms can occur at times much 

shorter than the ARL.    
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The Waterfall Chart  

Although under certain assumptions about the distribution of the data, the run 

length distribution may be computed analytically, more generally it is necessary to use 

computer simulation to estimate the run length distribution and the ARL and we employ 

this method here.   

Suppose the condition, s, of the plant is determined by the mean )(sµµ =  and that 

for  worst acceptable, =s 0µµ =  and for leunacceptabbest=s , 1µµ =  with µ0 < µ1 and 

that the observations {  are independent normally distributed with mean }tr µ  and 

constant variance .  For given values of t and h, we repeatedly generate random 

normally distributed data with variance .  Based on these as input to the Cusum 

algorithm , we compute the number of alarms hence getting estimates of 

2σ

at

2σ

+
tQ

Pr{ }|Alarm( ), µµ tTf =t ≤ .  Further repeating this for a grid of values of t and µ  

spanning a region relevant to our application, we compute estimates at a sufficient 

number of points to generate the surface ),( µtf .  This surface is shown in Figure 3 for a 

system with µ0 (worst acceptable) = 1, µ1 (best unacceptable) = 1.5, σ = 0.15, 

( ) 2/ 12 0µµ +=d  and an alarm occurs when Q  exceeds the detection threshold h = 

0.5.   

+
t

This example is typical of the monitors used for on-board diagnostic applications.  

One observation is observed per trip and we require for a best unacceptable condition a 

high probability of an alarm set in two trips.  Also for a worst acceptable condition we 

require a relatively low probability of alarm in the design life of the plant (say 100,000 

trips).  
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Figure 3.  Probability of Indicating a Malfunction within a Given Time  

for a Particular Condition of the Plant.  

To better appreciate the information that can be gained from Figure 3, Figure 4 

shows the surface sliced for a constant condition  of the plant.  This figure shows the 

cumulative distribution function of the run length  

10 .  Thus for a plant that is constantly “best 

unacceptable (b.u.)” the probability of detecting a b.u. malfunction in two trips is more 

than 50 percent.   

)(sµ

== )midpoint,( µtf

.}2/)(|atAlarmPr{ µµµ +=≤ tT
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Figure 4.  The Cumulative Distribution Function Is the Probability of Indicating a 

Malfunction at Different Run Lengths for a Particular Condition of the Plant. 

Figure 5 shows the surface sliced for a specific run length t  so 0

}|atAlarmPr{),( 00 µµ tTttf ≤== .  This graph is the power function for a particular 

run length from which we can read off the probabilities of making Type I and II errors.  

Thus for a given algorithm and adjustable threshold parameters, the waterfall chart 

combines information about the run length distribution and the power function which are 

both relevant for a specific application.   

 11



10
run length

State of the system

1

Probability 
of 

alarm

1,00
0

100
,000

worst a
cceptable

best unacceptable

midpoint

undefined

good

bad

 

Figure 5.  Power of the Monitor at a Particular Run Length.  

 

If we slice the three-dimensional surface for a specific probability, we get a 

contour plot, which can be used for threshold selection and sensitivity analysis as 

discussed in the next section.   

The waterfall chart shows the probability of an alarm for given fixed conditions. 

One of the reasons we are interested in evaluating the performance of a monitoring 

algorithm, however, is that we expect the plant to deteriorate.  The waterfall chart is 

therefore not completely realistic.  To be more realistic we would need to know precisely 

how the plant would deteriorate.  Unfortunately the manner in which the plant will 

deteriorate is seldom known.  Thus the waterfall chart is constructed with the (albeit 
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unrealistic) assumption that the condition that the plant remains constant throughout its 

remaining life.    

Threshold Selection and Robustness Analysis 

The waterfall chart in Figure 3 is computed based on a specific detection 

threshold, h.  In applications we often need to select h to achieve certain run length 

requirements as nearly as possible.  One important assumption is that the process 

standard deviation σ  is known; it is important therefore to evaluate the monitor’s 

robustness to misspecification of σ .   

The graph in Figure 6 shows five percentiles of the cumulative run length 

distribution of Q  (probability of alarm = 0.01, 0.1, 0.5, 0.9, and 0.99) for h = 0.1, 0.3, 

and 0.5 and for σ = 0.1, 0.15, and 0.2.  We see that as the standard deviation increases, 

the waterfall in general becomes flatter and the probability of an alarm increases for most 

but not all conditions of the plant.  These sub-graphs display a pattern that is general and 

useful for aiding the kind of intuition needed to successfully fine-tune a monitor.     

+
t
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Figure 6.  Threshold Selection and Robustness Evaluation  

(3100 simulated runs) 

 

From Figure 6 we also see that as the threshold increases, the entire waterfall 

moves back, with each percentile occurring at a higher run length or a worse condition.  

Increasing the threshold also makes the waterfall steeper.  This is to be expected because 

the variance of  increases roughly linearly with t, the number of observations 

included.  We might therefore expect that the variance might increase roughly linearly 

with the threshold, as well.  This means that the threshold divided by the standard 

deviation of  should increase roughly in proportion to 

+
tQ

+
tQ h  corresponding to an 

increase in the statistical power of the procedure indicated by an increasing steepness of 

the contours as h increase in Figure 6.  
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Graphs like Figure 6 may be used as a tool for designing and fine-tuning monitors 

in a number of ways.  We will illustrate with Q  but the idea can be applied to any 

monitor.  Figure 6 can be used to select a detection threshold, h and also to determine if a 

scheme using this value of h would still be acceptable if the standard deviation differed 

from that assumed.  Somewhat surprisingly, decreasing the standard deviation for a given 

h might in some cases actually decrease the probability of detecting a best unacceptable 

condition in two observations if the threshold h was held constant.  Such information is 

important for an automobile manufacturer confronted with an on-board diagnostics 

compliance test by a governmental regulatory agency.  Also by comparing Figure 6 with 

a similar analysis for different monitors, say an Exponentially Weighted Moving Average 

(EWMA), a deeper understanding of the comparative behavior of the two monitors could 

be obtained.  

+
t

Discussion and Conclusion 

The waterfall chart as a perspective plot has shown itself to be a useful tool for 

communicating the stochastic nature of a monitor.  It shows the relationship between the 

power function and the cumulative run length distribution of a monitor and so can relate 

run length properties to power and Type I and II error probabilities.  Equi-probable 

contour plots can aid in threshold selection and robustness evaluation.   

Lourden (1971) and Beibel (1996) showed that Page’s one-sided Cusum has the 

smallest maximum delay to detection of an abrupt failure for a given average run length 

for a constant worst acceptable condition among all possible monitors.  However, since 

our models of monitoring situations are never completely accurate, robustness is more 

important than optimality (see Box and Luceño, 1998, pp. 6-10).  Moreover, different 
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optimality criteria may make other monitors preferable to a Cusum.  Creative plots, such 

as those discussed here, can help users compare and evaluate alternative monitors.  In 

general, the waterfall chart has shown itself to be useful for a variety of purposes -- and 

can in principle be generated for any monitor by Monte Carlo simulation.   
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