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Figure 2.1.  One-Sided and a Bayes-Adjusted Cusum Simulations   
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It is sometimes more important to isolate a fault than identify it.   

Bayesian Sequential Updating:   
 
Step 1.  Observation:  Updating 
knowledge with Bayes’ theorem 
 
Step 2.  Deterioration:  Adjusting the 
posterior to produce the prior for the 
next observation  
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PREFACE  

Comments are invited on this prepublication edition of “Foundations of 

Monitoring Dynamic Systems”.  Your questions and suggestions may help improve future 

written and oral presentations of these ideas.  Please email sgraves@prodsyse.com.  

Thanks.   

 

ABSTRACT 

The use of sophisticated computer controls of systems provides growing 

opportunities for designing additional systems for malfunction detection.  Prime 

examples are provided by legally mandated On-Board Diagnostics to detect malfunctions 

in the emission controls on new automobiles sold today in the US, Canada and Europe, 

but the techniques can be profitably applied in many situations where data are collected 

over time.  This article asserts that Bayesian sequential updating provides a general, 

unifying principle for understanding and designing monitors, i.e., systems that in real time 

can monitor, detect and isolate malfunctions.  Bayesian sequential updating includes as 

special cases exponentially weighted moving averages (EWMAs) and Kalman filters 

more generally.  In other applications, the Bayesian sequential monitor is accurately 

approximated by Page’s one-sided Cusum of log(likelihood ratio).   

 
KEY WORDS:  Monitoring;  Bayesian Sequential Updating;  Cusum of log(likelihood 

ratio);  Kalman Filtering;  exponentially weighted moving average (EWMA);  Bayes-

adjusted Cusum;  statistical process control (SPC).   
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1.  INTRODUCTION 

With the increasing computerization of products from simple to highly complex, 

the opportunities and demands for real-time diagnostic monitoring systems is growing 

rapidly.  Prime examples are provided by On-board diagnostics (OBDs) to detect 

malfunctions in the emission controls required by law in new automobiles sold in the US, 

Canada and Europe.  Other examples include modern heart pacemakers and implantable 

defibrillators that monitor both the patient and the device itself:  They monitor the 

patient’s condition and intervene only when necessary, and they sound an audible alarm if 

the electrical leads are corroded or the battery is low.  Further examples help isolate 

opportunities for process improvement in complex manufacturing processes.   

Monitors for complex systems (here called “plants” for consistency with the 

control theory literature) can be designed to isolate the specific component or subsystem 

subject to an actual or impending malfunction, making repairs easier, more certain, and 

less costly.  In manufacturing, model-based monitors can be designed to compare the 

performance of different pieces of equipment ostensibly doing the same thing and alert 

appropriate personnel when a substantive difference is detected.   

Monitoring is different from testing.  The difference can be seen in clinical trials, 

which do both.  The primary purpose of a clinical trial is to test a new therapy for safety 

and effectiveness;  this is a property of the therapy that is not expected to change over 

time.  Monitoring on the other hand is intended for systems that may start out good and 

then later change.  In clinical trials, the condition of patients is monitored for indications 

that the treatment should be altered or discontinued.  Statistical tests are evaluated on the 

basis of the probabilities of errors of Types I and II, false alarms and failures to detect.  
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Monitors, however, are more than just repetitive tests.  Their design criteria should be 

specified more in terms of the average delay to detection or the probability of detection in 

a certain period of time, balanced by, for example, the probability of a false alarm in the 

design life of the “plant” being monitored;  see Box et al. (2000) or Box et al. (2002).   

In this report, we describe monitoring in terms of Bayesian sequential updating, 

which we define as a two-step iteration portrayed in Figure 1.1:  (1) observation and (2) 

transition.  If one is concerned with detecting single outlying observations, there is no 

transition step, and statistical control charts are appropriate.  This is one extreme of the 

general rule that the nature of the transition step in large part drives the choice of a 

monitor.   

Figure 1.1.  Bayesian Sequential Updating 

Step 1.  Observation:  Updating knowledge
using Bayes’ Theorem

Step 2.  Transition, including possible
deterioration

 
In particular, if the transition occurs as an abrupt jump from one state to another, 

Bayesian sequential updating produces a monitor that in most applications is quite similar 

to a cumulative sum (Cusum) of log(likelihood ratio), as we explain in section 2.  In so 
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doing, we introduce a new recursion for the Girshick-Rubin (1952) Bayesian monitor that 

works with non-i.i.d. observations and non-constant hazard.   

On the other hand, if the transition occurs as a gradual migration (normal random 

walk) in the mean of a univariate series of observations, Bayesian sequential updating 

gives us a new fast initial response (FIR) strategy for an exponentially weighted moving 

average (EWMA), as we explain in section 3. We also establish connections between (a) 

the initial distribution and some objective reference distribution (based, e.g., on 

experience with comparable manufacturing or comparable clinical trials) on the one hand, 

and (b) the migration rates and lifetime distributions on the other.  To our knowledge, this 

is the first discussion in the literature of these objective foundations for the priors in 

Bayesian sequential updating.  This permits appropriate use of increasing hazard rate 

information, e.g., to decide when patients need special attention in clinical trials or to 

develop preventive maintenance programs.  Increasing hazard rate information can be 

used to improve the effectiveness of any monitor that implicitly assumes a constant 

hazard, whether that monitor be a cumulative sum, an EWMA, or a more sophisticated 

Kalman / state space model.  Section 4 derives a simultaneous EWMA for both mean and 

variance from a Bayesian sequential model.   

Section 5 generalizes the EWMA to Kalman filtering.  The development here 

parallels that of section 3, since an EWMA is a univariate Kalman filter.  Section 5 

illustrates how two alternative failure modes can be isolated using Kalman filtering.  

Section 6 applies the theory of section 5 to a more complex physical system, the air intake 

system for an automobile.  Here, we find that the naive approach of adding extra 

parameters for alternative failure modes sometimes encounters numerical difficulties.  
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This occurs when the incoming observations do not provide sufficient information to 

simultaneously estimate all components of the enhanced state vector.  In such cases, the 

natural alternative is to run multiple Kalman filters in parallel, each designed for a 

different combination of malfunctioning components;  this is discussed in section 7.  

Concluding remarks appear in section 8.   

This report is divided into three parts.  The first part, sections 2-4, considers 

univariate monitors:  Cusums and EWMAs.  The second part, sections 5-7, discuss the 

special opportunities for detecting multiple faults for potentially univariate observations.  

The third very brief part presents concluding remarks.   

We believe that the discussion in this report provides a strong argument for 

Bayesian sequential updating as a general, unifying principle for monitoring.   
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We discuss here three univariate applications of Bayesian sequential updating.  

All assume univariate observations.  The difference lies in the nature of the transition 

process.  If the transition / deterioration occurs abruptly, Bayesian sequential updating 

produces a Bayes-adjusted Cusum, as described in section 2.  If deterioration follows a 

normal random walk, Bayesian sequential updating gives us a Bayesian exponentially 

weighted moving average (EWMA), as we see in section 3.  If in addition, the EWMA 

transition precision (reciprocal variance) itself migrates following a beta distribution, this 

principle generates a simultaneous EWMA for mean and variance, discussed in section 4.  

Part II generalizes the EWMA to a multivariate state space with possibly multivariate 

observations used for fault isolation.   

 



Foundations of Monitoring  

© 2001 Graves and Bisgaard  2-1 Foundations2-Cusum.doc:  11/26/01 

2.  BAYES-ADJUSTED CUSUM  

Consider an abrupt jump from a simple (completely specified) good condition 

(H0) to a simple bad condition (H1).  Bayesian sequential updating with independent, 

identically distributed (i.i.d.) observations and a constant hazard rate was considered by 

Girshick and Rubin (1952).  They derived a rather simple but non-intuitive iteration from 

a cost model and a two-state, recurrent Markov chain;  this was generalized to a 

continuous time stochastic process by Shiryaev (1963).   

 

2.1.  Non-i.i.d. observations, Non-Constant Hazard.   

We wish to generalize the Girshick-Ruben procedure to non-i.i.d. observations 

and non-constant hazard.  In particular, suppose we observe random variables yt that have 

a density fi,t = fi,t( yt | yt–1, yt–2,...), i  = 0, 1 for good or bad (where f0,t and f1,t are densities 

with respect to a common dominating measure and may vary with t).  Consider a random 

variable t0 = the change point from good to bad.  Let ht = hazard rate = Pr{ bad at t +1 | 

good at t }.  Further suppose that f1,t does not depend on t0, which means that the 

Bayesian posterior can be summarized in a single number, gt = Pr{ good at t + 1 | y1, ..., yt 

}.   

Step 1 of the two step iteration of Figure 1.1 requires us to compute the posterior 

probability of the “plant” being bad given the prior, gt–1;  we use the term “plant” to refer 

to the system being monitored, following the practice in the control theory literature.  In 

this context, step 1, Bayes’ theorem, gives us the following:   

Pr{ good at t | y1, ..., yt } = ( )1,11,0

1,0

1 −−

−

−+ tttt

tt

gfgf
gf

.   
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Step 2 allows for a possible transition, giving us the prior for the next observation as 

follows:   

                            gt = Pr{ good at (t + 1) | y1, ..., yt }   

                = (1 – ht) Pr{ good at t | y1, ..., yt } = 
( )

( )1,11,0

1,0

1
1

−−

−

−+
−

tttt

ttt

gfgf
gfh

. (2.1) 

We now rewrite this in term of odds for the system being bad at time (t + 1), Bt = 

( ) tt gg−1 , as follows:   

Bt = [ ht + (f1,t /f0,t)Bt– 1 ] / (1 – ht) 
or  
 Bt = Ht + ztBt– 1,  (2.2)  

where Ht = ht /(1 – ht) = hazard odds, and zt = (f1,t /f0,t)/(1 – ht) = adjusted likelihood ratio.  

Without the transition (i.e., if ht = 0), this is merely the odds formulation of Bayes’ 

theorem:  The posterior odds is the likelihood ratio times the prior odds.   

Meanwhile, Girshick and Rubin converted (2.1) into a recursion for Zt = [1/gt – 

1/(1 – ht)]/Ht = {1 + Bt – [1/(1 – ht)]}/Ht, which with non-constant hazard becomes  

 Zt = ( )( )tttt HHZz 111 −−+ . (2.3)  

Girshick and Rubin obtained the constant-hazard simplification of this:  Zt = zt(1 + Zt).   

Computationally, (2.2) and (2.3) often lead to numeric difficulties, which can be 

avoided by using logarithms.  Let βt = log(Bt) = log(odds for bad), ηt = log(Ht) = 

log(hazard odds), and ζt = log(zt) = log[likelihood ratio(t)] – log(1 – ht).  Then (2.2) can 

be rewritten as  

 βt = ηt + log[1 + (ztBt– 1 / Ht) ],  

 = ηt + log[1 + exp(∆t)], (2.4)  
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where ∆t =  ζt + βt– 1 – ηt.  But ζt exceeds log[likelihood ratio(t)] by [– log(1 – ht)] as long 

as 0 < ht < 1.  However, in most practical applications, ht is so small that log(1 – ht) ≅ (–

ht) ≅ 0, which makes ζt essentially the log(likelihood ratio).   

An alternative to (2.4) can be obtained by factoring (ztBt–1) out of (2.2), producing 

the following:  

 βt = ζt + βt– 1 + log[1 + exp(–∆t)]. (2.5)  

We combine these two expressions using (2.4) when 0 > ∆t = (–|∆t|) and using (2.5) when 

0 < ∆t = |∆t|.  This gives us  

 βt = max{ ηt, ζt + βt– 1 } + log[1 + exp(–|∆t|)]. (2.6)  

Note that for any ∆t,  

0 < log[1 + exp(–|∆t|)] < log(2);   

except when |∆t| is small, this term will be negligible.  In that case, (2.6) is a cumulative 

sum with a floor at ηt .   

This can be written in a more familiar form by letting *
tQ  = βt  – ηt = the excess 

over the log hazard odds of the log odds for the plant being bad.  However, with non-

constant hazard, βt  is still the log odds for the plant being bad, while *
tQ  no longer seems 

usable.  Therefore, when writing *
tQ , we shall henceforth assume constant hazard, ht = h, 

so *
tQ  = βt  – η.  Subtracting η from both sides of (2.6), we get  

 *
tQ  = max{ 0, *

1−tQ  + ζt } + log[1 + exp(–|∆t|)], (2.7)  

recalling from (2.4) that ∆t = ζt + βt– 1 – η = *
1−tQ  + ζt .  Therefore, this last expression 

becomes  
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 *
tQ  = max{ 0, ∆t } + log[1 + exp(–|∆t|)]. (2.8)  

Alternatively, we may write this as follows:   

 *
tQ  = max{ 0, *

1−tQ  + ζt } + log[1 + exp(–| *
1−tQ  + ζt |)]. (2.9)  

As mentioned above, the term log[1 + exp(–| *
1−tQ  + ζt |)] will be negligible except 

when |∆t| is small.  If we drop it from (2.9), we get the following:   

 +
tQ  = max{ 0, +

tQ  + ζt }. (2.10)  

Figure 2.1 presents a typical simulation comparing (2.9) and (2.10) with 20 

observations changing from H0 to H1 at t = 11.  In this, we assume ht = 0.001, Hi:  yt ~ 

N(µi, 1), i = 0, 1, µ0 = 0, and µ1 = 1.  First note that the log(likelihood ratio) in this case is 

given by the following:   

 log(likelihood ratio) = ( ) 2σµ dyt − , (2.11)  

where µ  = (µ1 + µ0)/2 and d = (µ1 – µ0).  This makes +
tQ  in Figure 2.1 a standard one-

sided Cusum, apart from the term [– log(1 – ht)] in ζt.  However, since ht = 0.001, we 

have [– log(1 – ht)] = 0.001, and this difference is not visually detectable in Figure 2.1.   
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Figure 2.1.  One-Sided and a Bayes-Adjusted Cusum Simulations 
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Four vertical scales are provided in Figure 2.1.  The first is the “natural” Cusum 

scale, starting at 0.  The second is the log odds for the plant being bad, which we obtain 

by solving for βt  the definition of the Bayes-adjusted Cusum with (2.7), getting βt  = *
tQ  + 

η, where η = ( )[ ]hh −1ln  = ( )999.0001.0ln  = ( )91.6− .  Recall that βt  is the log odds for 

the plant being bad at time t + 1, while *
tQ  is the excess in the log odds for bad over the 

log hazard odds.  The third and fourth scales in Figure 2.1 simply translate the log odds 

for bad into odds, Bt, and probability, (1 – gt).   

The behavior here is typical of what we have seen in other simulations with 

different values of µ1 and differing numbers of observations before and after the change:  

*
tQ  and +

tQ  tend to go up and down together.  When the plant is bad, these movements 

are nearly identical.  When the plant is good, the movements up and down of *
tQ  and +

tQ  
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are not always parallel.  Apart from the trimming effect of the max(.,.) function, this is 

due to the contribution of the Bayes-adjustment term log[1 + exp(–| *
1−tQ  + ζt |)] in (2.9).  

The effect of this term is displayed graphically in Figure 2.2.   

Figure 2.2.  Bayes-adjusted and Traditional Cusum Iteration 

( *
1−tQ  + ζt)

( +
−1tQ  + ζt)

+
tQ  =

max{ 0, (  +
−1tQ  + ζt) }

*
tQ  = max{ 0, ( *

1−tQ  + ζt) }
+ log[1 + exp(–| *

1−tQ  + ζt |)]

Distribution of increments ζt 
for good plants (H0)

Behavior of iterations 
for bad plants (H1)

 

After the transition, under H1, +
tQ  increases on average Eζt = d2/(2σ 2) – log(1 – 

ht) each observation; meanwhile, *
tQ  increases slightly faster initially and approaches this 

average growth rate asymptotically;  in the case considered in Figure 2.2, this asymptote 

was for practical purposes reached in one observation.   

Other simulations suggest that the difference between the Bayes-adjusted and 

traditional Cusums seems large when the difference between good and bad is small and 

small when the difference between good and bad is large.  However, even when the 

difference between good and bad is small to moderate, the difference between the Bayes-
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adjusted and traditional Cusums seems to be fairly consistent and predictable, except 

when the threshold is low admitting a high false alarm rate.   

This is consistent with previous reports, e.g., by Srivistava and Wu (1993, p. 665), 

who reported that with low thresholds and high false alarm rates, the Bayes’ procedure 

was much better than the traditional Cusum.  An earlier simulation comparison by 

Roberts (1966) found the Cusum and the Bayesian approaches essentially equivalent.   

To be precise, Srivistava and Wu compared the “Shiryaev-Roberts” procedure to a 

Cusum and an exponentially weighted moving average (EWMA).  Shiryaev (1963) 

assumed a uniform distribution for time to failure;  this has a hazard rate h(s) = 1/(t – s) 

that becomes infinite as s → t.  This was a reasonable theoretical contribution for 1963.  

However, more recent developments in biostatistics and reliability theory suggest that a 

hazard rate of this form would not be recommended except perhaps for some very special 

applications.   

Fortunately, the Srivistava and Wu evaluation seems consistent with our intuition 

and with Roberts (1966), which suggests that these conclusions are relatively insensitive 

to the assumed uniform failure time distrbution.  Roberts considered the Girshick-Rubin 

recursion (2.3), which is a linear transformation of the posterior odds.  This 

transformation is constant only when the hazard rate is constant, which Girshick and 

Rubin assumed.  However, with non-constant hazard, we are unable to find a sensible 

interpretation for either their iteration Zt, (2.3), or our Bayes-adjusted Cusum *
tQ , (2.7) - 

(2.8);  in that case, we prefer the log odds for bad, βt, using (2.6).   

One advantage of the Girshick-Rubin iteration is that it produces an answer with 

zero hazard, which Roberts assumed.  When the hazard rate is zero, we get different 
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answers from (2.5) and (2.7)-(2.9):  Zero hazard means that the log hazard odds ηt = 

( )∞− , so ∆t = (+∞), and (2.5) becomes  

 βt = ζt + βt– 1.  (2.12)  

In words, the posterior log odds (βt) is the prior log odds (βt– 1) plus the log likelihood 

ratio (ζt).  This is the log odds formulation of Bayes’ theorem and is also a traditional 

two-sided Cusum.  It is clearly the correct answer if we are testing to evaluate an 

unchanging property of nature, as noted by Wald (1947).   

However, any monitoring application involves a search for a change, which 

implies a non-zero hazard;  in such situations, a traditional two-sided Cusum, (2.12), 

would be inappropriate except when used with a traditional V-mask, which makes it 

equivalent to two one-sided Cusums.   

For zero hazard, both the Girshick-Rubin iteration (2.3) and our Bayes-adjusted 

Cusum *
tQ , (2.7) - (2.9), involve indeterminate forms:  ( )tt HH 1−  = (0/0) in (2.3) and (ηt  

– ηt– 1) = [(– ∞) – (– ∞)] in (2.9).  We can avoid these indeterminate forms by assuming 

the hazard rate is non-zero and constant but virtually negligible.  For constant hazard, our 

Bayes-adjusted Cusum, *
tQ , is a monotonic transformation of the Girshick-Rubin 

iteration, and with small hazard, both are essentially equivalent to the standard one-sided 

Cusum (2.10), introduced by Page (1954).   

In sum, if the hazard rate is truly zero, then a two-sided Cusum performing a 

Bayesian formulation of a Wald sequential test (2.12) is appropriate.  Meanwhile a non-

zero but constant and small hazard rate calls for a monitor that is virtually equivalent to a 

one-sided Cusum (2.10).   
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In this subsection, we discussed a Bayesian iteration for an abrupt jump from good 

to bad and displayed similarities to a Cusum.  We next consider selection and 

interpretation of a detection threshold.   

 

2.2.  Cusum Threshold and Increase in Posterior Log(Odds) 

An obvious decision criterion for Bayesian monitoring is to set an alarm when the 

posterior probability of the plant being bad exceeds a threshold, which may be tied to the 

economics of the problem (e.g., Girshick and Rubin 1952).  This translates into a 

threshold for the posterior log odds for bad, βt.  With constant hazard, this is equivalent to 

setting a threshold for our Bayes-adjusted Cusum, *
tQ  = βt – η;  this threshold on *

tQ  

becomes the “increase” in log odds for a bad plant (βt) over the log hazard odds (η) 

required to set an alarm.   

The substantial similarities between a one-sided Cusum +
tQ  and the Bayes 

monitor *
tQ  suggest that the detection threshold for the traditional Cusum +

tQ  is roughly 

equivalent to that for *
tQ , although the example of Figure 2.2 and similar simulations 

indicates a consistent bias between *
tQ  and +

tQ .  Other simulations like Figure 2.2 

suggest that this bias may decline as the difference between H0 and H1 increases.  Further 

research is needed to determine the magnitude of this bias and the extent to which this 

odds-increase interpretation can be extended from *
tQ  to +

tQ .   

Ignoring this bias, this equivalence is illustrated in Table 2.1 for a constant hazard 

rate of 0.01.  To deepen our understanding of this connection, suppose we are collecting 
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one sample per day from a sewage treatment plant and preparing a Cusum chart of the 

result.  And suppose that ζt = log( f1,t /f0,t) – log(1 – ht) in (2.9) has standard deviation of 1 

and mean (– 0.5) if the system is good and (+0.5) if bad.  A standard Cusum chart might 

put the threshold for +
tQ  at 4, which would have an Average Run Length (ARL) of 

roughly 350 to a false alarm and 8.5 to a valid alarm (e.g., Bissell 1969).   

Table 2.1.  Equivalent Thresholds between a One-Sided Cusum 
and the Bayes’ Posterior 

 
 One-Sided Bayes Posterior with Hazard 0.01 
 Cusum log(odds) odds probability 
   3 – 1.60        0.20 0.17 
   4 – 0.60        0.55 0.36 
   5    0.40        1.50 0.60 

(Caveat:  These numbers are intended only to illustrate the 
essential equivalence of the different interpretations.  
Further research is needed to model the bias visible in 
Figure 2.1 but ignored here.)   

 

Suppose also that the plant has an upset (goes bad) roughly once every 100 days, 

with roughly a constant hazard rate of 0.01.  Then from Table 2.1, we see that this is 

roughly equivalent to deciding to declare an upset when the posterior probability of the 

system being bad is 0.36 or greater.  Note that if the model is correct, then this 0.36 

reflects the proportion of systems with comparable histories that are bad;  it is not 

(merely) a subjective probability.  (As noted with the table, further research is needed to 

adequately model the bias visible in Figure 2.1 but ignored in Table 2.1.)   
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2.3.  Costs and Run Lengths  

In many applications, the expected cost of a delay to detection will be proportional 

to the average run length (ARL) to an alarm after the system monitored becomes bad.  

Meanwhile, the expected cost of a false alarm might be proportional to the probability of 

an alarm during the good life of the system monitored (the “plant”).  Obviously, 

increasing the threshold increases the ARL(bad) while reducing the false alarm rate.  

Therefore, selecting a threshold implies a certain assessment of the cost of a false alarm 

relative to the cost of a delay of one more observation.  This gives us three equivalent 

ways to select a threshold for a Cusum / Bayes monitor:   

(a) Select a posterior probability [or log(odds)] above which an alarm is 

declared.   

(b) Select a threshold to balance some characteristics of the run length 

distributions for good and bad systems.   

(c) Specify the cost of a false alarm relative to the cost of waiting one 

more observation before declaring an alarm on a bad system.   

In practical monitor design, it may be wise to evaluate all three perspectives before 

making the final choice of threshold.   

This three part equivalence assumes the model is correct, which often is not the 

case.  For example, a monitor may be designed ignoring serial dependencies in the data, 

because it is not feasible to model them with the resources available in the project.  The 

final evaluation and selection of a threshold might be made by extrapolating from run 

length data collected using artificially low thresholds in prototype systems, as suggested 

by Bisgaard et al. (2001).  These thresholds would automatically adjust for serial 
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dependence and model inadequacy in the data.  Meanwhile, the threshold implied by this 

equivalence for the posterior probability of the system being bad, ignoring serial 

dependence and model inadequacy, might be ridiculously close to 1;  in such cases, the 

formally computed posterior is not a realistic assessment of the relative frequency of 

systems with comparable histories that are bad.  This does not negate the value of the 

monitor, only the posterior probability interpretation of it.   

 

2.4.  Cuscores 

We now return to the question of monitor design.  In some applications, it is more 

convenient to think in terms of looking for a signal in noise than to think in terms of 

defining “bad” distinct from “good”.  In such cases we replace the log(likelihood ratio) in 

(2.10) with Fisher’s efficient score [ignoring the term log(1 – ht) in ζt].  This gives us  
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where θ is a parameter indicating the extent to which a malfunction or signal of interest is 

present;  this is called the cumulative score function or Cuscore by Box and Ramírez 

(1992) and Box and Luceño (1997).  In essence, (2.13) is tangent to the log(likelihood), 

while (2.10) is a secant line.  The choice between the two rests more on which form 

seems to relate most easily to the way a user thinks about a particular monitoring 

situation, with neither form being universally preferred.  For further discussion of the use 

of these techniques for detecting changes in regression or time series models, see Box and 

Ramírez (1992) or Box and Luceño (1997).   
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We note in passing that the term “Cuscore” has been used in a different sense by 

others, e.g., Radaelli (1992), to denote a Cusum of “scores” achieved by transforming a 

continuous variable into a small number of discrete categories, roughly rounding off the 

observations grossly to 0 and 1.  This has the advantage of simplifying the analysis of the 

run length distribution.  However, it throws away some portion of the information in the 

observations in order to do so.   

 

2.5.  If the Bad Distribution Depends on the Changepoint  

Finally, we recall that the discussion so far ruled out one class of abrupt jumps 

from a simple good H0 to a simple bad H1:  situations such as tool wear, for which f1,t 

may depend on the changepoint t0, and for which the posterior can not be summarized in 

one number.  In such cases, we suggest that Bayesian sequential updating still provides a 

theoretical best procedure.  This theoretical best is not computationally feasible but still 

has value for evaluating the relative responsiveness of computational procedures. 

 

2.6.  Discussion  

In this section, we looked for an abrupt jump from one simple model of good to a 

simple model of bad.  We found that when the hazard rate is low and relatively constant, 

Bayesian sequential updating is reasonably well approximated by a Cusum of 

log(likelihood ratio).  If the hazard rate is not constant (i.e., the distribution of time to a 

problem is not exponential), then the theory presented here provides a natural way for 

improving diagnostic performance through the use of that information.  This could be 
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quite valuable for designing preventive maintenance procedures that combine reliability 

models of equipment that wears out or ages in other ways with periodic data collection.  

This holds promise for developing procedures that outperform any procedure that 

considers only one source of information.   

The next section of this report considers a random walk as a model for systems 

that tend to fail through random, gradual deterioration instead of an abrupt jump.   
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3.  DESIGNING BAYESIAN EWMA MONITORS  

USING GAGE R & R AND RELIABILITY DATA  

Consider a physical system with a condition xt that is not directly observable but 

that is assumed to follow a random walk, as  

 xt = µt + xt–1 + wt,   wt ~ N(0, 2
,twσ ), (3.1)  

where µt represents a potential deterministic drift, and wt represents an unpredictable 

portion of system reliability.  In subsection 3.1, we show how µt and tw,σ  relate to the 

reliability hazard rate.  In particular, we show that any reliability distribution can be 

modeled in terms of tw,σ  or (µt, tw,σ ).   

The analyses of this report assume we can model adequately the distribution of xt 

at first use, t = 1.  No monitor is designed for a completely unprecedented application:  

The time and money to design and use a monitor is justified from experience with other 

applications, which can be used to estimate a distribution at first use.  For a manufactured 

product, this could be obtained from control chart data collected at the end of the 

production line.  If this is a new product, the distribution at first use could be estimated 

from the history of similar products, adjusted if appropriate considering design objectives, 

prototype test data, and previous new product introductions.  In biostatistics, it could be 

obtained from previous clinical trials of roughly comparable therapies.  In portfolio 

management, one could consider the behavior of similar financial instruments.  In this 

article, we shall assume that x1 ~ N(x1|0, 2
0|1σ ).   

In subsection 3.2, we consider a process of the form (3.1) (with µt = 0 and tw,σ  = 

wσ  constant) observed with error,  
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 yt = xt + vt,   vt ~ N(0, 2
vσ ). (3.2)  

In many situations, σv can be estimated from a study of gage repeatability and 

reproducibility (NIST 2001, ch. 2).   

With adequate estimates of the distribution at first use, the hazard rate and σv, we 

can estimate the relative frequency distribution of the condition of plants at any future 

point in time, among all plants with comparable observed histories.  Subjective 

probabilities can be used, but objective probabilities are also available, within the limits 

of estimation precision and the comparability of our initial reference set.   

The conceptual framework is outlined in Figure 3.1, with mathematical details 

summarized in Table 3.1.  The result is an exponentially weighted moving average 

(EWMA), except that the weight on the last observation varies with time, converging to a 

constant;  expression numbers in Table 3.1 are keyed to the discussion below.   

Figure 3.1.  Bayesian Sequential Updating with a Random Walk  

Step 1.  Observation,  Updating knowledge 
using Bayes’ Theorem 

1.1.  Preparing  
a.  Predictive distribution  
b.  Posterior variance 
c.  Kalman gain 

1.2.  Updating 
a.  Prediction error 
b.  Posterior mean 

Step 2.  Transition and the prior for the next 
observation

2.1.  Posterior mean 
2.2.  Posterior variance 
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Table 3.1.  Bayesian EWMA Computations 

Prediction xt+1|t for time (t + 1) given information Dt = {yt, yt–1, ...}, available at 

time t:   

 xt+1|t = (1 – Kt)xt|t–1 + Ktyt = xt|t–1 + Ktet ,  et = (yt – xt|t–1) (3.18) 

Weight on the last observation (Kalman gain):   

 Kt = 1 / { 1 + [1/(ρ2 + Kt–1)] } (3.20) 
where  

ρ2 = 22
vw σσ  = (migration variance) / (measurement variance)  

and  
K1 = 1 with no prior knowledge of the initial condition of the plant 

Confidence bounds on xt are obtained from (xt | Dt–1) ~ N(xt|t–1, 2
1| −ttσ ), where  

 ( ) 2122
1|

2
|1 wvtttt σσσσ ++=

−−−
−+  (3.11) & (3.17) 

Evaluate prediction error et relative to  

 var(yt | Dt–1) = 22
1| vtt σσ +−  (3.9) 

 

This procedure provides a fast initial response (FIR) approach that is different 

from the FIR technique in the literature and is clearly tied to information obtainable for 

virtually any monitoring application:  the distribution of the condition of the plant at first 

use, x1, the reliability, coded in wσ , and the measurement noise vσ .  If the condition at 

first use is non-informative, this theory sets K1 = 1 and has Kt declining monotonically to 

an asymptote as information about xt accumulates.  We believe this has much greater 

intuitive appeal than the traditional FIR approach, which essentially asserts that the prior 

at t = 1 is as informative as the prior at any t > 1.   

This FIR approach is discussed in section 3.5 after considering an example in 

section 3.3 and discussing further the asymptotic behavior of the algorithm in section 3.4.  
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Questions of robustness are considered in section 3.6.  Section 3.7 considers when to 

declare a malfunction, and a summary discussion of this “normal random walk observed 

with error” appears in section 3.8.  This procedure is generalized to estimate a changing 

variance as well as a mean in section 4 and to sequential reestimation of gradually 

changing regression parameters in sections 5-7;  these later sections consider fault 

isolation as well as detection.  Much of this material is also known as Kalman filtering, 

although our Bayesian development differs somewhat from the minimum mean square 

prediction error principle used by Kalman (1960).   

 

3.1.  Hazard and Migration Rates  

We show here how the migration parameters (µt, tw,σ ) in (3.1) determine the 

reliability distribution, expressed in the hazard rate ht, and how the hazard rate constrains 

µt and determines tw,σ  given µt.  Of course, complex systems, whether products, 

production processes or humans, can be impacted by many different kinds of problems.  

We assume that ht is the hazard rate relevant to a process xt observed indirectly via yt.  

Standard techniques in biostatistics and reliability support cause-specific estimation of 

hazard rates.   

To understand the relationship between (µt , tw,σ ) and ht , we start by assuming 

that xt is good as long as L < xt < U.  If the distribution at first use is x1 ~ N(x1|0, 2
0|1σ ), then 

h1 = h0,1 + h1,1, where  

 








 −
Φ=

0|1

0|1
1,0 σ

xL
h ,  
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and 
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For a manufactured product, h1 is the proportion of units with x1 outside (L, U) or that fail 

for this reason when the customer first attempts to use them.   

Let Ft(xt) = Ft(xt | L < xτ < U, for all τ < t) be the cumulative distribution function 

(cdf) for xt given that it is not bad and has not previously been bad.  Then  
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Starting from (3.3) and (3.4), we derive the hazard rate ht and the cdf for xt good Ft(xt) 

recursive in pieces as follows.  First, let Ft,0(xt) be the cdf for xt , good or bad at time t 

given that it has not previously been bad as  

 ( ) ( )∫ −−
−




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Φ= 11
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1
0, tt

tw

ttt
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σ
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.   (3.5)  

Then the proportions of units too small and too large at time t among those good at t – 1 

are  

 ( )LFh tt 0,,0 = ,    
and  
 ( )UFh tt 0,,1 1−= .    

The hazard rate at time t is the sum of those failing both small and large, as  

 ht = h0,t + h1,t ,  (3.6)  

and the distribution of those still good is the truncated distribution from Ft,0, as  
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From (3.3) - (3.7), we see that the sequence (µt , tw,σ ) uniquely determines the hazard 

rate.  Conversely, if L < x1|0 < U and µt  = 0 for all t, then ht is monotonically increasing in 

σw,t and is 0 when σw,t, = 0, which means that ht uniquely determines σw,t.  [Expressions 

(3.1) and (3.3) - (3.7) can be generalized to a multivariate state space by assuming that xt 

is bad if it is outside an acceptance region A and defining Ft in the obvious way for all 

Borel sets.  In this more general setting, the parameters of the transition distributions 

uniquely determine the hazard rate.  With suitable additional restrictions, the hazard rate 

can uniquely determine some univariate aspect of the migration distribution.]  

Therefore, given data on product reliability or time to onset of an adverse reaction 

in clinical trials, a reasonably parsimonious model can be built for (µt , tw,σ ) consistent 

with the available data.  This does not require data on a new product or therapy never 

used before;  it only requires data on comparable products or therapies currently in use.   

3.2.  Univariate Bayesian Updating and an EWMA  

Now suppose we have yt being a noisy observation of the unknowable state of the 

plant xt, per (3.2).  We shall apply Bayesian sequential updating to this example with the 

added simplifications of assuming µt = 0 and σw,t = σw = constant.  We shall find that this 

gives us an exponentially weighted moving average (EWMA) in the limit for large t with 

an intuitively satisfying Bayesian answer to the fast initial response (FIR) problem.  This 
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approach will be compared to the traditional FIR in section 3.4 below, after discussing 

threshold selection in section 3.3.   

For cases involving normally distributed noise in observation and transition, we 

find it convenient to break the two steps in Figure 1.1 into the substeps outlined in Figure 

3.1.  In particular, we divide step 1 into “1.1.  Preparing” and “1.2.  Updating”.  This 

distinction highlights the fact that “1.1.  Preparing” can take place between the previous 

execution of step 2 and the current “1.2.  Updating” step.  With stationary systems most 

of “1.1.  Preparing” can be computed offline in advance of the application.  With 

traditional Kalman filtering (and traditional EWMAs), the Kalman gain is often replaced 

by an asymptotic value, and its transients are ignored.  This can help reduce demands on a 

real-time microprocessor, allowing in some cases the use of a cheaper microprocessor.   

We will preface this development with a brief comment about notation:  As 

indicated with (3.1) and (3.2), observations yt provide information about an unknown 

state of nature xt.  Just before each observation arrives, our knowledge of xt is 

summarized in the prior (xt | Dt–1) ~ N(xt|t–1, 2
1| −ttσ ), where Dt–1 = {yt–1, yt–2, ... y1, x1|0, 

2
0|1σ };  at time t = 1, this is the distribution at first use.  Step 1 in Figure 3.1 transforms 

this prior into the posterior (xt | Dt) ~ N(xt|t , 2
|ttσ ).  Step 2 then models a transition from xt 

to xt+1, and our knowledge then degrades accordingly to (xt+1 | Dt) ~ N(xt+1|t , 2
|1 tt+σ ), which 

becomes the prior at the next point in time.  We now consider specifics of these steps.   

Step 1.1.  Preparing.  We divide step 1.1 further into three substeps:  (1.1a) 

Predictive Distribution, (1.1b) Posterior Variance, and (1.1c) Kalman Gain, as we now 

explain.  
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Step 1.1a.  Predictive Distribution.  We begin by combining (xt | Dt–1) ~ N(xt|t–1, 

2
1| −ttσ ) with the observation process (3.2) and integrating out the unknowable xt to get the 

predictive distribution as follows:   

 ( yt | Dt–1) ~ N( ft, 2
1| −tyσ ),  

where  
 ft = xt|t–1,  (3.8)  

since the expected value of the sum in (3.2) is the sum of the expectations, and  

 2
1| −tyσ  = 2

1| −ttσ  + 2
vσ , (3.9) 

since the variance of a sum of uncorrelated random variables is the sum of the variances.  

(We maintain the distinction between ft  and xt|t–1 to stress their different functions and to 

facilitate generalization to situations where they are different.)   

Step 1.1b.  Posterior Variance.  When a quantity with a normal prior is observed 

with additive normal error, the posterior is also normal.  The posterior mean is a weighted 

average of the prior mean and the observation with weights inversely proportional to the 

variances.  The posterior variance is the reciprocal sum of the reciprocal variances (e.g., 

DeGroot 1970, p. 167).  We shall write this as follows:   

 (xt | Dt) ~ N(xt|t, 2
|ttσ ),  

where  

 xt|t = { }tvtttttt
vtt

tvtttt yx
yx 2

1|
2

1|
2
|22

1|

2
1|

2
1| −

−
−
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−
−

−
− +=

+
+

σσσ
σσ
σσ

,  (3.10)  

and  
 22

1|
2

|
−−

−
− += vtttt σσσ . (3.11)  

DeGroot (1970, p. 38) calls a squared reciprocal scale factor a “precision”, which 

for the normal distribution is one over the variance.  With this concept, (3.11) says that 
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the posterior precision, 2
|
−
ttσ , is the sum of the precisions of the prior, 2

1|
−

−ttσ , and the 

observation, 2−
vσ .   

Step 1.1c.  Kalman Gain.  The weight on the last observation yt in (3.10) is called 

the Kalman gain, and will be denoted as follows:   

 Kt = 22
|

−
vtt σσ .  (3.12)  

From (3.11), we see that  
 22

|
2

1|
−−−

− −= vtttt σσσ .  

We substitute these last two expressions into (3.10) to get  

 xt|t = ( ){ }tvttvtttt yx 2
1|

22
|

2
|

−
−

−− +− σσσσ   

 = ( )1|1| −− −+ tttttt xyKx .  (3.13)  

For plants with stationary transitions and constant observation and transition 

variances, all the computations of substep 1.1 can be done offline except for the mean of 

the predictive distribution.  With or without those offline computations, if these 

“preparations” are done prior to the arrival of the latest observation, yt, it can shorten 

slightly the time required to update our knowledge of the state of the plant.   

Step 1.2.  Updating.  In “updating”, we compute the prediction error and use that 

to update the “posterior mean”, our point estimate of the state of the plant.   

Step 1.2a.  Prediction Error.  When the observation yt arrives, we compute the 

prediction error as,  

 et = yt – ft.  (3.14)  

Step 1.2b.  Posterior Mean.  With the prediction error in hand, we multiply it by 

the Kalman gain and add the product to the prior mean to obtain the posterior mean per 

(3.13), as  
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 xt|t = tttt eKx +−1| .  (3.15)  

This completes step 1, observation, in Bayesian sequential updating as outlined in 

Figure 3.1.  Next, we permit the plant to transition in preparation for the next observation, 

per step 2.   

Step 2.  Transition and Prior for the Next Observation.  Given the posterior 

mean and variance from step 1, we can easily compute using (3.1) the prior mean and 

variance for the next observations, as follows:   

Step 2.1.  Prior Mean.   
 xt+1|t = xt|t,  (3.16)  
and  

Step 2.2.  Prior Variance.   
 2

|1 tt+σ  = 2
|ttσ  + 2

wσ . (3.17)  

This completes step 2.  The resulting prior distribution at one point in time N(xt+1|t, 

2
|1 tt+σ ) becomes an input for step 1.1, N(xt|t–1, 2

1| −ttσ ), at the next point in time.  In this way, 

observations are processed sequentially as they arrive.  If the model (3.1) - (3.2) is 

correct, then the prior N(xt+1|t, 2
|1 tt+σ ) summarizes all the information in Dt = {yt, yt–1, ..., 

y1, x1|0, σ1|0} about the state of the plant at time t+1.   

The most important expressions in this section are summarized in Figure 3.2.  We 

next apply this iteration to an example (section 3.3) before deriving some general 

properties of this case.  These properties include the convergence of the Kalman gain to 

an asymptote (section 3.4).  This convergence turns out to be monotonic, which helps to 

establish it as a natural Bayesian answer to the fast initial response (FIR) problem.  This 

is followed by discussions of robustness (section 3.6), threshold selection (section 3.7), 

and concluding remarks on EWMAs (section 3.8).   
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Figure 3.2.  Bayesian EWMA Iteration  
 

Step 1.  Observation, updating knowledge using Bayes’ theorem  
1.0.  Observation model  

a.  Prior  (xt | Dt–1) ~ N(xt|t–1, 2
1| −ttσ ) (from step 2) 

b.  Observation  (yt | xt) ~ N(xt , 2
vσ ) (3.2) 

1.1.  Preparing  
a.  Predictive distribution       (yt | Dt–1) ~ N(ft , 2

1| −tyσ ),  

 ft = xt|t–1, 2
1| −tyσ  = 2

1| −ttσ  + 2
vσ  (3.9)  

b.  Posterior precision and variance   22
1|

2
|

−−
−

− += vtttt σσσ  (3.11)  

c.  Kalman gain   Kt = 22
|

−
vtt σσ  (3.12)  

1.2.  Updating  
a.  Prediction error   et = yt – ft  (3.14) 
b.  Posterior mean   tttttt eKxx += −1||   (3.15) 

Step 2.  Transition and the prior for the next observation  
2.0.  Model   (xt+1 | xt) ~N(xt, 2

wσ ) (3.1)   
2.1.  Posterior mean   xt+1|t = xt|t  (3.16) 

2.2.  Posterior variance   2
|1 tt+σ  = 2

|ttσ  + 2
wσ  (3.17) 

 
In sum:  Combining (3.13) - (3.15):   

 ( ) ( ) ttttttttttttt yKxKxyKxx +−=−+= −−−+ 1|1|1||1 1  (3.18) 
where  

 ( )[ ]{ } vwtt KK σσρρ =++= − ,111 1
2  (3.20) 

 ( ) ( ){ }1412 22 −+=→ ∞ ρρK  (3.21) 
For confidence limits, combine (3.11) and (3.17):   
 2

|1 tt+σ  = ( ) 122
1|

−−−
− + vtt σσ  + 2

wσ   
 

3.3.  Sample Computations for a Bayesian EWMA   

Sample computations using this procedure are given in Table 3.2 and Figure 3.3.  

As suggested in the summary box at the bottom of Figure 3.2, we really only need three 

columns from Table 3.2.2:  the prior mean and variance and the Kalman gain.  The 

remaining columns of Table 3.2.2 are provided to describe more clearly the machinery of 

Bayesian updating as discussed with Figures 3.2 and 3.1.   
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Table 3.2.  Univariate Bayesian Sequential Updating:  Illustrative Calculations  
Table 3.2.1.  Scenario Simulated  

Manufacturing distribution     
 Mean Variance Standard Deviation  Precision  
 x1|0 2

0|1σ  0|1σ  2
0|1

−σ  
 0 0.1     0.316  10 

Observation error  Variance  Standard Deviation Precision 
  2

vσ  vσ  2−
vσ  

    0.01 0.1 100 
Migration Mean Variance  Standard Deviation  Precision  

 µt 2
wσ  wσ  

2−
wσ  

“Actual”   0.03 0 0 ∞ 
Assumed 0      0.001      0.0316 1,000 

Table 3.2.2.  Illustrative Calculations  
 Simulated  Prior from Previous Step 2 Intermediate Computations in Step 1 
 True Observation  Posterior Kalman Prediction 
 State yt = Mean Variance Precision Precision Variance Gain  Error   
Time xt xt + vt 1| −ttx  2

1| −ttσ  2
1|

−
−ttσ  2

|
−
ttσ  2

|ttσ  Kt et 

eq’n →(3.1) (3.2) (3.16) 
[+(3.15)] 

(3.17)  (3.11)  (3.12) (3.14)+ 
(3.8) 

 1 – 0.103 – 0.063 0 0.1000 10.0 110.0 0.00909 0.909 – 0.063 
 2 – 0.073 – 0.097 – 0.057 0.0101 99.1 199.1 0.00502 0.502 – 0.040 
 3 – 0.043 – 0.084 – 0.077 0.0060 166.0 266.0 0.00376 0.376 – 0.007 
...         ... 
19    0.437    0.497    0.396 0.0037 270.2 370.2 0.00270 0.270    0.101 
20    0.467    0.698    0.423 0.0037 270.2 370.2 0.00270 0.270    0.275 
21    0.497     0.497 0.0037 270.2     
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Figure 3.3.  A Bayesian EWMA  
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Numbers for simulated “true state” and “observation” are given in the second and 

third columns of Table 3.2.2.  These were obtained as pseudo-random numbers generated 

according to the “manufacturing distribution”, “observation error”, and “migration” 

described in Table 3.2.1.  The manufacturing distribution is assumed to be normal with 

mean, variance, and precision as given in Table 3.2.1;  these define the prior at time t = 1.  

We begin computing the “posterior precision” for observation 1 using expression (3.11), 

as 2
1|1

−σ  = 2
0|1

−σ  + 2−
vσ  = 10 + 100 = 110.  The posterior variance 2

1|1σ  = 1/110 = 0.00909.  

The Kalman gain is obtained from (3.12) as Kt = 2
1|1σ 2−

vσ  = 0.00909 × 100 = 0.909.  The 

prediction error (–0.063) is obtained as usual as the observation (–0.063) minus the 

forecast 0, per (3.14) and (3.8).  The posterior mean, per (3.15), is then the prior mean 

plus Kt et = 0 + (0.909) × (–0.063) = (–0.057);  this appears in Table 3.2.2 as the prior for 

time t = 2, per (3.16).   
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Note that the prior and posterior variances and precisions, 2
1| −ttσ , 2

|ttσ , 2
1|

−
−ttσ , and 

2
|
−
ttσ , and the Kalman gain, Kt, all converge to constants to three significant digits by 

observation t = 20.  This occurs here because σv and σw are constant.  This is a special 

case of a more general result that for “completely observable” models (Gelb 1999, p. 142) 

with constant, linear transitions and constant observation and transition covariance 

matrices, the Kalman gain and the prior and posterior covariance matrices all converge to 

constants.  We next consider more carefully the behavior of Kt in this EWMA case.   

 

3.4.  Kalman Gain for a Bayesian EWMA  

In this section, we study the behavior over time of the Kalman gain of (3.12) and 

tie more carefully the above model to a traditional exponentially weghted moving average 

(EWMA).  First, we combine (3.13) with (3.16) to obtain the following:   

 xt+1|t = xt|t–1 + Kt(yt – xt|t–1)   

            = ( ) ttttt yKxK +− −1|1 .   (3.18)  

This shows more clearly than (3.10) that the posterior mean xt+1|t is a weighted average of 

xt|t–1 and yt.  By recursively substituting (3.18) into itself, we can show that xt+1|t is a 

weighted average of yt–j, j = 0, 1, ..., with weights declining exponentially, provided 0 < 

Kt < 1 and Kt is bounded away from 1 as t → ∞.  [Box and Luceño (1997, p. 69, 91) 

discuss this assuming Kt = K∞ is constant.]   

To confirm that 0 < Kt < 1, substitute (3.11) into (3.12) to obtain the following:   

 Kt = 22
|

−
vtt σσ  = ( ) 2122

1|
−−−−

− + vvtt σσσ  = ( ) 12
1|

21 −−
−+ ttv σσ .   (3.19)  
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But 2
vσ  and 2

1| −ttσ  are both variances and strictly positive, from which we conclude that 0 

< Kt < 1.  To establish that Kt is bounded away from 1, we first use (3.11) to establish that 

2
|ttσ  < 2

vσ , so by (3.17), 2
1| −ttσ < 2

vσ  + 2
wσ .  Thus, 2

1|
2 −

−ttv σσ  > ( )222
wvv σσσ +  = 

( )2211 vw σσ+  = ( )211 ρ+ , where ρ = vw σσ  = the relative migration rate, being the 

square root of the migration variance as a proportion of the noise variance.  With this, we 

find that ( )2
1|

21 −
−+ ttv σσ  > 1 + ( )211 ρ+  = ( ) ( )22 12 ρρ ++  > 1.  We use this in (3.19) to 

get Kt < ( ) ( )22 21 ρρ ++  < 1. This establishes that Kt is bounded away from 1, as 

required to establish the exponential decay in j of the weights on yt–j in (3.18), thereby 

justifying the term “exponentially weighted moving average”.   

To derive a recursion for Kt, we first substitute (3.17) into (3.11) to obtain the 

following:   

 2
|
−
ttσ  = ( ) 122

1|1
−

−− + wtt σσ  + 2−
vσ     

                      = ( ){ }1
122

1|1
22 ++ −

−−
−

vttv σσρσ ,   

where ρ = vw σσ , as defined in the previous paragraph.  We multiply both sides of this 

equation by 2
vσ  and recall the definition of Kt, (3.12), to get the following:   

 ( ){ }1
1

1
21 ++= −

−
−

tt KK ρ .   (3.20)  

In Figure 3.4, we present the behavior of Kt over time for different levels of ρ 

assuming 2
0|1σ  = ∞.  A similar analysis would establish that 2

|1 tt+σ  and 2
|ttσ  also approach 

asymptotes, which we denote by 2
|1∞+∞σ  and 2

|∞∞σ  with an obvious abuse of notation.  
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These latter two asymptotes must satisfy (3.11) and (3.17), which means that 2
|1∞+∞σ  > 

2
|∞∞σ .   

This figure suggests that Kt goes to an asymptote, K∞, say, that depends on ρ.  

Moreover, for ρ > 0.3, this asymptote is essentially achieved by observation 10.  For ρ > 

3, the asymptote is essentially achieved by t = 2.  For ρ < 0.1, the asymptote is not 

achieved 10 observations.  [For ρ = 0, we have Kt = 1/t, which is easily established using 

(3.20).  Thus, with zero migration variance, the EWMA becomes a straight average, as 

we would intuitively expect.]   

To obtain a formula for this asymptote, we substitute K∞ for both Kt and Kt–1 in 

(3.20) and solve for K∞.  We get the following:   

 

Figure 3.4.  Kalman Gain for EWMA vs. Time  
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   (3.21)  

To study the asymptotic behavior of K∞ as ρ gets large or small, we use the binomial 

theorem as x+1  = 1 + (x/2) – (x2/8) + O(x3) in these last two expressions to get the 

following:   

 
( )

( ) ( ) ( ) ( ){ }.128821

1
642

42

ρρρρρ
ρρ

O
OK

+−+−=

+−= −−
∞    (3.22) 

The asymptote (3.21) is plotted vs. ρ in Figure 3.5. The most obvious conclusion 

from (3.21) and Figures 3.4 and 3.5 is that the choice of weight on the last observation is 

equivalent to specifying ρ = the square root of the migration variance, 2
wσ , as a 

proportion of the measurement noise, 2
vσ .  This relationship quantifies what we would 

qualitatively expect:  With processes that change slowly relatively to the measurement 

noise, history is more informative that the last observation.  On the other hand, rapidly 

changing processes with relatively informative observations find recent history more 

relevant than the past for predicting the future.  The asymptotic expansions in (3.22) 

quantify the behavior we see in Figure 3.5 for large and small ρ.   
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Figure 3.5.  Equivalence between EWMA Weight and Relative Migration Rate  

Migration Rate σw Relative to the Noise σv :  
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Similar expressions can be obtained for 2
|1∞+∞σ  and 2

|∞∞σ .  Moreover, the 

convergence is monotonic:  If ∞ > 2
0|1σ  > 2

|1∞+∞σ , the convergence is similar to the image 

in Figure 3.4 but starting some time after t = 1.  If 2
0|1σ  < 2

|1∞+∞σ , the curves increase to the 

asymptote, reflecting the fact that in this case, more information is lost due to the 

migration (3.1) than is gained from each observation (3.2);  see also Kirkendall (1989) 

and Harvey (1989, pp. 119, 124).  

 

3.5.  Bayesian and Traditional Approaches to FIR for EWMA  

Lucas and Saccucci (1990) observed that in many applications of a traditional 

exponentially weighted moving average (EWMA) with a constant weight on the last 

observations Kt = K∞ in (3.18), the resulting EWMA may require too many observations 
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to cross a threshold if the plant is bad, starting with x1|0 = µ0.  Their solution is to start 

with 25, 50 or 75 percent “head start”, i.e., with x1|0 = µ0 + p(µ1 – µ0), where p = 0.25, 

0.5, or 0.75.   

We believe that Bayesian sequential updating, as outlined in Figures 3.1 and 3.2, 

provides a more comprehensive and understandable approach to this important problem:  

In terms of the theory developed in sections 3.2 - 3.4 above, Lucas and Saccucci 

essentially assume that σ1|0 = σ∞+1|∞, but that x1|0 is misspecified and is better given as x1|0 

= µ0 + p(µ1 – µ0), where p = 0.25, 0.5, or 0.75.   

However, a monitor is almost never designed for a situation (plant), that is totally 

unique.  Someone suspects that a fault of a certain type may occur.  This suspicion is 

based on somebody’s experience with other applications that bear some resemblance to 

the problem at hand.  This experience provides access to an external reference 

distribution and data on the reliability of the plant from which estimates for the initial 

prior (x1|0, 2
0|1σ ) and migration variance 2

wσ  can be derived.  We combine this with a gage 

repeatability and reproducibility study (e.g., NIST 2001, ch. 2) to estimate the noise 

variance 2
vσ .  In this way, Bayesian sequential updating shows a person designing a 

monitor precisely how to use this relevant information;  the previously existing theory is 

not so clear about the relevance of this information and how to use it.   

For the FIR problem, this recommends adjusting 2
0|1σ , not x1|0, in the initial prior.  

The disadvantage is that the weight on the last observation is not constant but must be 

updated with each observation per (3.20) until convergence to K∞ is essentially achieved.   
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Finally, we believe that Bayesian sequential updating, as exemplified by the 

current work, provides a comprehensive theoretic foundation for work on the short run 

process control problem, recent discussed, e.g., by Nembhard and Mastrangelo (1998).   

 

3.6.  Robustness  

Box has noted that robustness is often more important than optimality, since a 

theoretically optimal solution may be so non-robust that it performs miserably under 

common discrepancies between reality and standard assumptions.  Box and Luceño 

(1997, pp. 117-127) find that the EWMA provides a quite robust procedure for tracking a 

drifting process, even if the migration mechanism differs substantially from the random 

walk of (3.1).  This is consistent with other work, e.g, Srivistava and Wu (1993) and 

Roberts (1966), that finds that the EWMA performs reasonably well under a broad variety 

of circumstances, though not as well as a cumulative sum in reacting to certain abrupt 

jumps.   

However, a procedure may be robust to one kind of model inadequacy but quite 

sensitive, nonrobust, to another.  For example, an EWMA may follow a process average 

reasonably well even if the transitions differ substantially from the random walk of (3.1) 

and the weight on the last observation differs from the optimal.  However, we would 

expect that confidence intervals using the predictive or the prior variance, (3.9) or (3.17), 

might not perform very well if either the measurement or the migration variance, 2
vσ  or 

2
wσ , were poorly estimated.  Traditional methods for estimating these parameters and 
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evaluating the applicability of this model are discussed by Box and Luceño (1997, pp. 

117-127).   

There is at present another practical disadvantage to the use of our Bayesian 

EWMA, (3.18) with (3.20):  We do not currently have a simple method for estimating the 

run length characteristics for the Bayesian EWMA, other than suggesting that it probably 

does not differ substantially from the traditional FIR technique proposed by Lucas and 

Saccucci.  However, this is not conceptually a difficult problem and can be addressed, 

e.g., by Monte Carlo.   

 

3.7.  When to Declare a Malfunction?   

It is not as easy here to decide when to set an alarm as it is in the discussion of 

section 2 above, attempting to detect an abrupt jump from good to bad, rather than the 

gradual drift (random walk) considered here.  There, the posterior consisted of one 

number;  here, it is a distribution with two parameters that change over time.  One 

approach might be to develop an appropriate cost structure and develop a decision 

procedure to minimize the cost per unit time or total discounted cost over an indefinite 

future.  Related problems have discussed by Berger (1985, ch. 7) and West and Harrison 

(1999, sec. 11.6).   

We have not done that here.  Instead, we divided the real line into “acceptable”, 

“unacceptable”, and “undefined” regions:  The plant is “good” if L < xt < U, “bad” if {xt 

< L1 < L or xt > U1 > U}, and “undefined” if {L1 < xt < L or U < xt < U1};  L and U are 

“worst acceptable”, while L1 and U1 are “best unacceptable”.   
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We further simplified the problem by selecting decision limits *L  and *U  and 

indicating a malfunction when the prior variance σt+1|t is sufficiently small and xt+1|t is 

outside the *L - *U  limits.  The engineering design criteria for this decision procedure (or 

on-board diagnostic, OBD) are typically expressed in terms of an acceptably small 

probability of an excessive delay (to detection of xt being bad) and simultaneously a small 

probability of a false alarm in the design life of the plant (Box et al. 2000;  2002).   

This example is, in essence, an EWMA.  Run length distributions of EWMAs 

have been studied, for example, by Crowder (1987) and Lucas and Saccucci (1990), 

though the effect of the Bayesian non-constant weights (3.12) and (3.20) seem not to have 

been described in the literature.  Decision limits *L  and *U  could be obtained by Monte 

Carlo simulation if the work of Crowder and others does not seem appropriate.   

 

3.8.  Discussion  

In this section, we have derived Bayesian sequential updating for indirect 

observation of a univariate normal random walk.  The result is a Bayesian EWMA, 

previously discussed by Kirkendall (1989) and Harvey (1989).  However, our derivation 

is, we believe, more methodical and more easily understood and generalized than 

previous discussions of this case.   

Part of this development established that the selection of a weight for the last 

observation in an EWMA is equivalent to specifying the migration variance 2
wσ  relative 

to the noise variance 2
vσ , as discussed with (3.20) above.  Both of these quantities are 

generally available from external sources:  The migration variance 2
wσ  is tied to 
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reliability.  The noise variance 2
vσ  can be estimated from a metrology study.  Moreover, 

the distribution at the initiation of monitoring N(x1|0, 2
0|1σ ) is obtainable from data 

typically collected at the end of the production line for manufactured products or from 

other sources for monitoring in clinical trials or other applications.  This places at the 

disposal of a person designing a monitor relevant information whose use in this context 

has not been previously discussed in the literature that we have seen.  As such, it provides 

an alternative approach for determining Kt to the integrated moving average estimation 

procedure recommended by Box and Luceño (1997, sec. 4.8).   

As noted in section 3.5, this procedure is essentially as robust as traditional 

EWMA procedures, being computationally almost identical to them.  The Bayesian 

EWMA provides an additional interpretation as the prior and posterior at each step of 

objective distributions of units or plants among all with comparable histories.  We would 

not expect this probability interpretation to be robust to departure from serial 

independence or normality.  However, more casual usage of this theory, consistent with 

current EWMA usage, should be quite robust.   

Box and Luceño (1997) comment extensively about an EWMA as a forecast for 

an integrated moving average IMA(0, 1, 1) process.  The present development is 

asymptotically equivalent to this, and we recommend traditional EWMAs for applications 

where the transients are unimportant and the situation does not justify the effort of 

attempting to access other data such as the distribution at first use, gage R & R studies, 

and reliability data.   

The rest of this report generalizes the work of this section.  Section 4 develops 

procedures for effects such as aging that may change the variability as well as the mean.  
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Sections 5-7 consider multivariate state spaces to support fault isolation.  In applications 

where the output of different sensors should be related, this can allow one sensor to check 

another, supporting fault isolation without duplicating sensors and increasing per-unit 

costs.  This generalizes the work of Pole, West and Harrison (1994), West (1986), West 

and Harrison (1986), Gelb (1999), Gordon and Smith (1988, 1990), Harrison and Lai 

(1999), Lindley and Smith (1972), and others.   
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4.  BAYESIAN EWMA FOR MEAN AND VARIANCE  

In this section, we consider monitoring a process with drifting mean and variance.  

We assume the initial prior is normal for the mean and gamma for the precision (i.e., 

inverse gamma for the variance).  The application of Bayesian sequential updating 

produces exponentially weighted moving averages (EWMAs) for mean and variance.  If 

the rate of change in the variance is zero, it provides a natural Bayesian foundation for 

estimating the system variance assuming a known ratio between the migration and 

observation variances.  More generally, it provides an alternative model to autoregressive 

conditional heteroscedasticity (ARCH), popular in the econometrics literature [e.g., 

Lamoureux and Lastrapes (1990) or Shephard (1994)].   

Consider, for example, the plot in Figure 4.1.  In this image, a period of relative 

stability is followed by a time of increased volatility, with an increase in the variability 

accompanied by wider swings in the apparent central tendency.  Data on stock prices 

sometimes exhibit behavior similar to Figure 4.1:  Surprising news about a company 

bursts upon investors, leading to a period of increased volatility in the price per share.   

Similar behavior is exhibited by many physical systems, including manufacturing 

processes.  A piece of equipment (“plant”) performs in a stable manner until a component 

crosses a deterioration threshold that degrades the consistency of performance of the 

plant, leading to either a gradual or an abrupt increase in the variability.  This particular 

image presents the angular acceleration accompanying 250 firing events for cylinder 4 

measured at the front of a crankshaft of a V-8 engine.  For almost the first half of the 

period portrayed here, the plant appears to be operating in a relatively stable mode with 

modest variability.  Suddenly, we see a substantial jump followed by a period of elevated 
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instability.  During the initial, stable period, the vehicle is decelerating.  Roughly 20 

percent of the way through Figure 4.1, the engine begins misfiring occasionally on all 

cylinders due to inadequate spark.  However, the misfires are not apparent in the figure 

until the throttle is opened roughly half way through Figure 4.1, whereupon the gap 

between complete and incomplete combustion generates the instabilities we see.   

 

Figure 4.1.  A Time Series with Changing Mean and Variability  
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In this section, we will model these observations with Bayesian exponentially 

weighted moving averages (EWMAs) for mean and variance.  These are fairly simple and 

elegant tools suitable for many applications where an increase in variability may 

contribute to the detection of a change.  For misfire detection, this model might provide a 

bridge towards more sophisticated models that could aid in fault isolation as well as 
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detection.  The results of applying these tools to the data of Figure 4.1 appear in Figure 

4.2.  The EWMA for mean appears in Figure 4.2.1, substantially smoothing the data.  

Two sets of dashed lines about this mean give 99.7% confidence bounds for the mean and 

for the next observation;  these are Student’s t confidence bounds with degrees of 

freedom reflecting the equivalent number of observations incorporated in the relevant 

inverse chi-square distribution of the EWMA for variance.   

 

Figure 4.2.  Example Smoothing of Mean and Standard Deviation  
Figure 4.2.1.  Data and Drifting Mean 

Figure 4.2.2.  Absolute Prediction Error and 
Smoothed Standard Deviation of Prediction Error 
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Similarly, the dark solid line in Figure 4.2.2 presents the square root of the 

EWMA for variance of the predictive distribution.  It starts large because the substantial 

uncertainty about the mean at first use implies substantial uncertainty about the first 
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observation.  Information quickly accumulates about the location of the mean, which then 

allows information to accumulate about the variability as well.  A pair of dashed lines 

close to the solid line give 99.7% confidence bounds for the uncertainty in the estimated 

predictive standard deviation, using as before the relevant inverse chi-square distribution 

of the EWMA for variance.  A third dashed line gives a Student’s t 99.7 percent upper 

bound for the prediction error.   

The theory here follows the development for the normal theory Bayesian EWMA 

for process mean in section 3 above with the addition of a parameter for relative precision 

(i.e., reciprocal variance) that evolves following a gamma (or chi-square) distribution 

conjugate to the normal distributions for process mean.  This work is based on more 

general theory discussed by West and Harrison (1999) and Pole, West and Harrison 

(1994).  These authors present results substantially more general than what we consider 

here, without clearly relating their “dynamic Bayesian” recursion for precision to an 

EWMA for variance.  We believe also that our double subscript notation, e.g., xt|t–1 for a 

prior and xt|t for a posterior, makes it easier to follow the logic than their superficially 

simpler notation.  [Notation similar to ours was used by Harvey (1989).]   

The basic theoretical development is discussed in section 4.1.  Confidence 

intervals needed to evaluate the uncertainty in the various quantities of interest are 

obtained by integrating out the relative precision, thereby obtaining Student’s t 

distributions companion to the normal-gamma pairs.  This complicates the theory in 

exactly the same way that Student’s t complicates confidence intervals in traditional 

sampling theory.  These complications are discussed separately in section 4.2;  they are 

necessary in applications, but earlier introduction may get in the way of understanding the 
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primary development of the logic.  The application of this theory to the data of Figure 4.1 

is discussed in section 4.3.  Section 4.4 provides concluding remarks.   

The computations described below may seem rather complex to some.  

Applications requiring only smoothed estimates of mean and variability may need only 

EWMAs of mean and squared prediction error.  If no fast initial response capability is 

needed, weights on the last observation and statistical control limits can be constructed 

with effort comparable to current EWMA procedures.  The sample computations in 

section 4.3 include several steps that merely involve renaming certain quantities.  This is 

done to clarify the theoretical development, making it easier to understand and remember.  

It has the unfortunate side effect of making the procedure look more complicated than it 

really is.   

4.1.  Bayesian Updating with a Drifting Mean and Variance  

In this section, we develop the theory for a Bayesian exponentially weighted 

moving average (EWMA) for both mean and variance.  The basic formulae are outlined 

in Table 4.1.  This provides a standard EWMA for both mean and variance with the 

weight on the last observation changing with time, converging to an asymptote as 

information accumulates on the state of the process.  As with the Bayesian EWMA for 

mean only, discussed in section 3 above, this provides a very sensible fast initial response 

(FIR), adjusting the weight on the last observation to balance the relative information 

content of prior and observation.   
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Table 4.1.  Algorithm for Bayesian EWMA for Mean and Variance  

Assume  
Observation  ( )tvtttt Nvvxy φσ 2,0~,+=  (4.4) 
Migration  ( )twtttt Nwwxx φσ 2

1 ,0~,+=+  (4.8) 
EWMA xt | t– 1 for mean xt  
 ( ) ttttttttttt eKxyKxKx +=+−= −−+ 1|1||1 1  (4.17) & (4.23)  
Prediction error  1| −−= tttt xye  (4.16) 

Kalman gain  ( ){ }1
2111 −++= tt KK ρ , 222

vw σσρ =  (4.14) 
EWMA 2

1| −ttτ  for relative variance 1−
tφ   

 ( ) ( )2
1|

2
1|

2
|1 1 −−+ +−= tyttttttt e σλτλτ  (4.22) 

Weight on the last prediction error  ( )11 1| += −ttt nλ  
χ2 / Student’s t degrees of freedom ( )11||1 += −+ tttt nn δ ,  0 < δ < 1 (4.19) & (4.18) 

Prediction error variance  22
1|

2
1| vttty σσσ += −−  (4.10) 

Prior variance  ( ) 2122
1|

2
|1 wvtttt σσσσ ++=

−−−
−+  (4.24) & (4.12) 

Confidence interval for xt via Student’s t 
 ( ) ( )1|

2
1|1|1 ;,~| −−−− tttttttt nsxtDx   

Sample variance for the mean  2
1|

2
1|

2
1| −−− = tttttts τσ  (4.25) 

Prediction error via Student’s t 
 ( ) ( )1|

2
1|1 ;,0~| −−− tttytt nstDe  

Sample variance for prediction error 2
1|

2
1|

2
1| −−− = tttytys τσ  (4.26) 

 
The theory follows naturally from the two-step Bayesian sequential updating 

procedure outlined in Figure 4.3.   

Step 1.  Observation and Bayes’ Theorem.  As each new observation arrives, the 

first step is to combine the information it contains about the condition of the plant (i.e., 

the process monitored) with the prior from previous experience.  The next step is to 

modify the resulting posterior to account for a transition in the plant anticipated before 

the next observation.   
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Figure 4.3.  Bayesian Sequential Updating of Mean and Variance  
 

Step 0.  Distribution at First Use 

( ) ( )
( )2,2~

,~|

0|10|11

1
2
0|10|111
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2
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−−−
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Step 1.  Observation and Bayes’ Theorem 

( ) ( )
( ) ( )2,2~|

,~,|

||

2
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tttttt

tttttttt

dnD
xNDx

Γφ
φσφ

Step 2.  Transition and Prior for the Next Observation 

( ) ( )
( ) ( )tttttttt

tttttt

xNDx

dnD

φσφ

φ
2

|1|111

|1|11

,~,|

2,2~|

++++

+++ Γ

 

Step1.0.  Model Assumptions.  Specifically, at first use, the condition of the plant 

(x1 | φ1) is assumed to follow N(x1|0 , 2
0|1σ /φ1), where φ1 = the relative precision, which is 

assumed to follow a gamma distribution, Γ(n1|0 /2, d1|0 /2).  For future reference, we note 

that ( ) ( ) ( )11111, φφφ fxfxf = , where  
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 ( )





















 −
−∝

2

0|1

0|11121
111 2

exp
σ

φφφ
xx

xf ,  (4.1) 

and  
 ( ) ( ) { }2exp 0|11

22
11

0|1 df n φφφ −∝ − ,  (4.2) 
so 

 ( ) ( )
























+









 −
−∝ −

0|1

2

0|1

0|11121
111 2

exp, 0|1 d
xx

xf n

σ
φφφ . (4.3) 

(We often omit constants required to make probability densities integrate to one when 

they are not needed to understand what we are doing and may obscure our message.)   

At each point in time, we observe  

 yt = xt + vt , where vt ~ N(0, 2
vσ /φ t),   

so   (4.4) 

 ( )

















 −
−∝

2
21

2
exp,

v

ttt
tttt

xy
xyf

σ
φ

φφ .   

Just before this observation, the prior for (xt , φ t  | Dt–1) is {N(xt|t–1, 2
1| −ttσ /φ t), Γ(nt|t–1/2, 

1| −ttd /2)}, where Dt–1 = { yt–1, yt–2,..., y1, x1|0, 2
0|1σ , n1|0, d1|0}, the history available at time 

1−t :   

 ( ) ( ) ( )111 ,, −−− = tttttttt DfDxfDxf φφφ ,  
where  

 ( )





















 −
−∝

−

−
−

2

1|

1|21
1 2

exp,
tt

tttt
tttt

xx
Dxf

σ
φφφ , (4.5) 

and  
 ( ) ( ) { }2exp 1|

22
1

1|
−

−
− −∝ −

ttt
n

ttt dDf tt φφφ , (4.6) 
so  

 ( ) ( )
























+









 −
−∝ −

−

−−
−

−
1|

2

1|

1|21
1 2

exp, 1|
tt

tt

ttttn
tttt d

xx
Dxf tt

σ
φφφ . (4.7) 
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When t = 1, (4.5) - (4.7) is provided by the initial prior (4.1) - (4.3);  later, it is provided 

by the output of step 2, transition, after the previous observation.   

As outlined in Figure 4.3, when a new observation arrives, this prior is converted 

to a posterior (step 1), and the posterior is then modified to model a transition, producing 

a prior for the next observation (step 2).  We shall see that the resulting posterior and the 

new prior are both also normal-gamma, which we write as {N(xt|t, 2
|ttσ /φ t), Γ(nt|t/2, 

ttd | /2)} and {N(xt+1|t, 2
|1 tt+σ /φ t+1), Γ(nt+1|t /2, ttd |1+ /2)}, respectively.   

In particular, the transition in location is modeled as  

 xt = xt–1 + wt–1,   wt ~ N(0, 2
wσ /φ t), (4.8) 

while the distribution for the relative precision is discounted from Γ(nt|t /2, ttd | /2) for φ t to 

Γ( 2|1 ttn + , 2|1 ttd + ) for φ t+1, with nt+1|t  = ttn |δ  and dt+1|t  = ttd |δ , for some δ with 0 < δ < 

1.  

We now describe the use of Bayes’ theorem in this context.  To simplify the 

presentation of details, we break this activity into two substeps, preparing and updating.   

Step 1.1.  Preparing.  We further divide “preparing” into three substeps:  (1.1a) 

Predictive Distribution, (1.1b) Posterior Variance, and (1.1c) Kalman Gain, as we now 

explain.  

Step 1.1a.  Predictive Distribution.  We want the marginal distribution (yt | φ t , 

1−tD ).  From (4.4), we see that yt is the sum of two independent, normally distributed 

random variables, so (yt | φ t , 1−tD ) is also a normal distribution, with mean and variance 

being the sums of the means and variances of xt and vt :   
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 ( yt | φ t , Dt–1) ~ N( ft, 2
1| −tyσ /φ t),  

where  
 ft = xt|t–1,  (4.9)  
and  
 2

1| −tyσ  = 2
1| −ttσ  + 2

vσ . (4.10) 

[Note that  1−
tφ  is a common factor of the variances of (xt | φ t , Dt–1) and the observation 

per (4.4), and is therefore also a common factor of the predictive variance.] 

Step 1.1b.  Posterior Variance.  When a quantity with a normal prior is observed 

with additive normal error, the posterior is also normal.  The posterior mean is a weighted 

average of the prior mean and the observation with weights inversely proportional to the 

variances, and the posterior variance is the reciprocal sum of the reciprocal variances 

(e.g., DeGroot 1970, p. 167).  We shall write this as follows:   

 (xt | φt , Dt) ~ N(xt|t, 2
|ttσ /φ t),  

where  

 xt|t = { }tvtttttt
vtt

tvtttt yx
yx 2

1|
2

1|
2
|22

1|

2
1|

2
1| −

−
−

−−−
−

−
−

−
− +=

+
+

σσσ
σσ
σσ

,  (4.11)  

and  
 22

1|
2

|
−−

−
− += vtttt σσσ . (4.12)  

A squared reciprocal scale factor is sometimes called a “precision” (e.g., DeGroot 

1970, p. 38); for N(µ, 2σ ), the precision is 2−σ .  With this concept, (4.12) says that the 

posterior precision, φ t
2

|
−
ttσ , is the sum of the precisions of the prior φ t

2
1|

−
−ttσ  and the 

observation φ t
2−

vσ ;  the relative precision φ t cancels leaving (4.12).   

Step 1.1c.  Kalman Gain.  The weight on the last observation yt in (4.11) is called 

the Kalman gain, and will be denoted as follows:   

 Kt = 22
|

−
vtt σσ .  (4.13)  
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A careful analysis of Kt reveals that it is dimensionless, depending essentially on 

the ratio of the migration variance to the observation variance.  Denote this ratio by ρ2 = 

22
vw σσ .  Since the relative precision φ t cancels, the analysis of section 3.4 above applies, 

giving us the following simple recursion for Kt:   

 ( ){ }1
1

1
21 ++=

−
−

−
tt KK ρ .   (4.14)  

To use Kt in (4.11), we first use (4.12) to obtain  

 22
|

2
1|

−−−
− −= vtttt σσσ .  

We substitute this with (4.13) into (4.11) to get  

 xt|t = ( ){ }tvttvtttt yx 2
1|

22
|

2
|

−
−

−− +− σσσσ   

 = ( )1|1| −− −+ tttttt xyKx .  (4.15)  

For plants with constant observation and transition variances, all the computations 

of substep 1.1 can be done offline except for the mean of the predictive distribution.  

With or without those offline computations, if these preparations are done prior to the 

arrival of the latest observation, yt , it can shorten slightly the time required to update our 

knowledge of the state of the plant.   

Step 1.2.  Updating.  In “updating”, we compute the (a) prediction error and use 

that to update (b) the posterior mean and (c) the posterior precision.   

Step 1.2a.  Prediction Error.  When the observation yt arrives, we compute the 

prediction error as,  

 et = yt – ft.  (4.16)  
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Step 1.2b.  Posterior Mean.  With the prediction error in hand, we multiply it by 

the Kalman gain and add the product to the prior mean to obtain the posterior mean per 

(4.15), as  

 xt|t = tttt eKx +−1| .  (4.17)  

Step 1.2c.  Posterior Precision.  We now combine the predictive distribution (4.9) 

- (4.10) with the prior for the common precision (4.6) as  

 ( ) ( ) ( )111 ,, −−− = tttttttt DfDyfDyf φφφ ( ) ( )[ ]






 +−∝ −−

−−
1|

2
1|

21

2
exp1|

tttyt
tn

t dett σφφ   

 ( ) { }2exp |
22|

ttt
n

t dtt φφ −∝ − ,  
where  

nt|t = nt|t–1 + 1 
and   (4.18) 

( ) 1|
2

1|| −− += tttyttt ded σ .   

But since f(φ t | Dt) = f(φ t | yt, Dt–1) = f(yt, φ t | Dt–1) / f(yt, | Dt–1) ∝ f(yt, φ t | Dt–1), we see 

that (φ t | Dt) ~ Γ(nt|t /2, dt|t /2).  

This completes step 1, observation, in Bayesian sequential updating as outlined in 

Figure 4.3.  Next, we model the transition that we assume will occur before the next 

observation, per step 2.   

Step 2.  Transition and Prior for the Next Observation.  Given (xt | φ t, Dt) and 

(φ t | Dt) from step 1, we consider the transition for the relative precision φ t to φ t+1 and for 

the location xt to xt+1.  

Step 2.1.  Prior Precision.  Following Pole, West and Harrison (1994), West and 

Harrison (1999), and Shephard (1994), we model a potential change in precision by 
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discounting the chi-square / gamma degrees of freedom and scale factor by a constant δ, 

with 0 < δ < 1, so  

 (φ t+1 | Dt) ~ Γ(nt+1|t / 2, dt+1|t / 2),  
where  

nt+1|t = δ nt|t ,  
and   (4.19) 

dt+1|t = δ dt|t . 

Pole, West and Harrison (1994, p. 61) describe this step by saying that, “no formal model 

is specified for scale evolution, the scale prior being directly defined as a discounted 

version of the previous posterior.”  West and Harrison (1999, p. 361) report that this 

particular variance discounting can be justified by assuming that  

 φ t+1 = δφγ tt ,  (4.20) 

where (γt |Dt) ~ Beta[δnt|t /2, (1 – δ )nt|t /2];  for this distribution, E(γt |Dt) = δ , so E(φt+1 |Dt) 

= φt . 

It may help to understand δ  to note that [using (4.18) and (4.19)]  

 nt |t → ( )δ−11   as t → ∞ (4.21) 

(West and Harrison, p. 362).  Thus, selecting δ  is equivalent to specifying the degrees of 

freedom in the steady-state chi-square distribution for the relative precision.   

Expression (4.20) can be modified in a variety of ways to model, e.g., the increase 

in volatility of stock prices accompanying an increase in trading volume (e.g, Lamoureux 

and Lastrapes 1990) or the effect in Figure 4.1 of a change in throttle angle.  However, 

with or without (4.20) and possible refinements, we must still ignore the difference 

between φ t and φ t+1 in modeling the transition from xt  to xt+1, which is the subject of step 

2.2.   
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Expressions (4.18) - (4.19) are equivalent to an EWMA for the relative variance, 

which we define as 2
|1 tt+τ  = tttt nd |1|1 ++ .  By (4.19) and (4.18), this is   

2
|1 tt+τ  = 

( )
( )11|

2
1|

2
1|

+
+

−

−−

tt

tyttt

n
ed

δ
σδ

 = 
11|

2
1|

22
1|1|

+
+

−

−−−

tt

tyttttt

n
en στ

 = 2
|ttτ ,  

so  
2

|1 tt+τ  = ( ) 2
1|

22
1|1 −− +− tyttttt e σλτλ ,  

where   (4.22) 
λt = 1/(nt|t–1 + 1) = 1/nt|t .   

We will use this to evaluate variability in section 4.2 not conditioned on the unknown 

relative precision φ t .   

Step 2.2.  Prior Mean and Variance.  Given the posterior (xt | φ t , Dt) from step 1, 

with the transition (4.8), we get (xt+1 | φ t, Dt) ~ N(xt+1|t , ttt φσ 2
|1+ ), where  

 xt+1|t = xt|t,  (4.23)  
and  
 22

|
2

|1 wtttt σσσ +=+ .   (4.24) 

When we return to step 1 for the next observation, we replace φ t  with  φ t+1.  If δ = 1, the 

relative precision is assumed to be constant, so φ t+1 = φ t, and this step is obvious.  If δ < 

1, it is not clear (at least to the present authors) that our model assumptions necessarily 

imply that (xt+1 | φ t+1, Dt) ~ N(xt+1|t , 1
2

|1 ++ ttt φσ ).  However, even if it is not strictly true, it 

seems to be a reasonable approximation for many situations, as witnessed by its use in 

multivariate state space applications discussed, e.g., by Pole, West and Harrison (1994) 

and West and Harrison (1999).   

This completes step 2.  The resulting prior output from one point in time {N(xt+1|t, 

2
|1 tt+σ /φ t+1), Γ(nt+1|t /2, dt+1|t /2)} becomes an input prior for step 1.1, {N(xt|t–1, 2

1| −ttσ /φ t), 
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Γ(nt|t–1/2, dt|t–1/2)}, at the next point in time.  In this way, observations are processed 

sequentially as they arrive.  If the model (4.1) - (4.8) is correct, then the prior {N(xt+1|t, 

2
|1 tt+σ /φ t), Γ(nt+1|t /2, dt+1|t /2)} summarizes all the information in Dt = {yt, yt–1, ..., y1, x1|0, 

σ1|0} about the state of the plant at time 1+t  [ignoring the approximation involved in 

replacing φ t by φ t+1 following (4.23) - (4.24)].   

The most important expressions in this section are summarized in Figure 4.4.  

Unfortunately, these results can not be used directly, because they are all conditioned 

upon the unknown relative precision φ t .  We next integrate out this unknown precision, 

obtaining Student’s t marginals (section 4.2).  The results are applied to the data of Figure 

4.1 in section 4.3.  We then consider the asymptotic behavior of the smoothing 

parameters in section 4.4.   
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Figure 4.4.  Bayesian EWMA Normal-Gamma Iteration  
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4.2.  Student’s t Confidence Intervals  

The results of section 4.1 can not be used directly, because they involve the 

unknown relative precision φ t .  To apply the results, we must integrate out φ t , obtaining 

Student’s t marginals from normal-gamma distributions discussed in section 4.1.   

The normal-gamma density as in (4.3) and (4.7) is as follows:   

 ( ) ( )
























+





 −−∝ − dxxf n

2
21

2
exp,

σ
µφφφ .  

We integrate out φ to get the following:   

 ( )
( ) 212 +−












+





 −∝

n

dxxf
σ

µ ( ) ( )[ ] ( ) 21221
+−

−+∝
n

nsx µ ,  

where  
 222 τσ=s  and nd=2τ .  

We summarize this by observing that x has a Student’s t distribution with n degrees of 

freedom and with center and scale of µ and s,  

 x ~ t(µ, s2; n).  

Applying this to the prior (4.7) gives us  

 (xt | Dt–1) ~ t(xt|t–1, 2
1| −tts ; nt|t–1),   

with   (4.25) 
 st|t–1 = σt|t–1τt|t–1,   

and 2
1| −ttτ  is the relative variance computed recursively by the EWMA in (4.22).  This was 

used in Figure 4.2.1 to determine the inner set of dashed lines as a 99.7 percent 

confidence interval for ( )tt Dx |1+ .   

Similarly, for the predictive distribution not conditioned on the unknown relative 

precision φ t , we get the following from (4.9)-(4.10) and (4.6):   
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 (yt | Dt–1) ~ t(ft, 2
1| −tys ; nt|t–1),   

with   (4.26) 
 sy|t–1 = σy|t–1τt|t–1.   

This was used to compute the outer dashed lines in Figures 4.2.1 and 4.2.2.  The inner 

pair of dashed lines in Figure 4.2.2 utilize the (0.0015 and 0.9985) quantiles of the 

gamma distribution of (4.19) to place confidence limits on sy|t–1.   

We now discuss the computation of a few of the numbers plotted in Figure 4.2.   

 

4.3.  Sample Computations  

The sample computations described in this section may be more complex than 

required for many applications.  For example, the forecast for the next observation ( ft), 

the current prior mean (xt|t–1), and the previous posterior mean (xt–1|t–1) are conceptually 

three different quantities that are numerically equal in the present context.  The difference 

is visible in the different confidence intervals associated with the three concepts.  In 

Figure 4.2, dashed lines represent confidence intervals based on the forecast and the prior.  

The confidence intervals associated with the posterior are slightly narrower than the 

confidence intervals for the prior and are not shown because we are more concerned with 

the future than the past.  This careful distinction in notation has helped us understand the 

EWMA and generalizations to, for example, Kalman filtering, where ft , xt|t–1, and xt–1|t–1 

may all be distinct.  These distinctions are maintained in this section, though they were 

suppressed in Table 4.1.   

In the present model, var(yt | φ t) = tv φσ 2  per (4.4) and var(xt | φ t) = tw φσ 2  per 

(4.8).  Since there are no other constraints on φ t , we can without loss of generality set 2
vσ  
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= 1.  With this choice, φ t  becomes the observation precision, and 2
wσ  = 

( ) ( )tttt yx φφ |var|var  = 2ρ  = the migration variance as a proportion of the observation 

variance.   

With this choice, table 4.2 begins by recording that the observation parameters for 

variance 2
vσ  and precision 2−

vσ  are both 1.  Similarly, table 4.2 reports that the migration 

variance parameter 2
wσ  is assumed to be 0.01, while the variance discount factor δ = 0.98.  

As discussed in section 3 above, the migration variance 2
wσ  is related to reliability and is 

equivalent to specifying the degree of smoothing, while δ = 0.98 corresponds to an 

asymptotic degrees of freedom of 50 per (4.21), one fifth of the observations in Figures 

4.1 and 4.2.   

The first row in the body of the table gives the first three observations yt plotted in 

Figure 4.1.  The initial prior for the mean per (4.1) is specified in terms of the mean x1|0 

and standard deviation σ1|0 .  A rough estimate obtained simply by looking at Figure 4.1 is 

x1|0 = 0 and σ1|0 = 25;  this latter number means that 2
0|1

−σ  = 0.0016 and 2
0|1σ  = 625.  For 

later observations, xt|t–1, 2
1|

−
−ttσ , and 2

1| −ttσ  are taken from step 2.2 at the bottom of Table 

4.2.  We carry both the precision and the variance in Table 4.2 because Bayes’ theorem 

for the normal distribution tells us to add precisions, while a simple sum of random 

variable requires addition of variances.   
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Table 4.2.  Illustrative Calculations for Bayesian Sequential Updating  
 
Observation variability: 

(4.4) conditional variance 2
vσ  = 1;  conditional precision 2−

vσ  = 1 
Transition:   
(4.8) conditional migration variance 2

wσ  = 0.01;  (4.19) variance discount factor δ = 0.98 
 
Step 
    time  1 2 3 
1.  Observation and Bayes' Theorem      
 Observation:  Measured angular acceleration     yt = -17.108 -19.095 -14.985 
 1.0.  Prior  (4.1) - (4.3), (4.5) - (4.7)      
  mean  xt|t–1 = 0.000 -17.081 -18.092 

  conditional     precision 2
1|

−
−ttσ  = 0.0016 0.992 1.953 

         variance 2
1| −ttσ  = 625.000 1.008 0.512 

  EWMA for variance  2
1| −ttτ  = 9.000 4.734 3.817 

  degrees of freedom  nt|t–1 = 1.000 1.960 2.901 
  sample standard deviation (4.25)               st|t–1 = 75.000 2.185 1.398 
  Student’s t  α = 0.0015 212.205 19.080 9.316 
  limits for        upper 15915.35 24.606 -5.067 
  the mean        lower -15915.35 -58.767 -31.117 
 1.1.  Prepare      
  1.1a.  Predictive distribution     
   mean (4.9)  ft = 0.000 -17.081 -18.092 

   conditional variance (4.10)     2
1| −tyσ  = 626.000 2.008 1.512 

  sample standard deviation (4.26) sy|t–1 = 75.060 3.083 2.402 
   99.7% confidence interval    
   Student’s t  α = 0.0015 212.205 19.080 9.316 
   for the upper 15928.10 41.750 4.290 
   observation lower -15928.10 -75.912 -40.474 
   for (absolute prediction error |et|) = 15928.10 58.831 22.382 
   for sample standard deviation sy|t–1    

   ( ) 1|1|
22

0015.0 ;0015.0 −−= tttt nns χ  = 3.53×10–6 1.33×10–3 1.54×10–3 

   ( ) 1|1|
22

9985.0 ;9985.0 −−= tttt nns χ  = 10.079 6.582 6.487 
   upper 0015.01| ss ty −  39926.11 84.550 61.279 
   lower 9985.01| ss ty −  23.643 1.202 0.943 
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  1.1b.  Posterior variability (4.12)     

   conditional precision                 2
|
−
ttσ  = 1.0016 1.992 2.953 

   conditional variance                   2
|ttσ  = 0.998 0.502 0.339 

  1.1c.  Kalman gain (4.13)  Kt = 0.998 0.502 0.339 
 1.2.  Update      
  1.2a.  Prediction error (4.16)                        et = -17.108 -2.014 3.107 

  standardize squared prediction error ( )2
1|

2
−tyte σ  = 0.468 2.020 6.384 

   log(likelihood) -5.514 -2.460 -2.768 
  1.2b.  Posterior mean (4.17)                        xt|t = -17.081 -18.092 -17.040 
  1.2c.  Posterior relative precision     
   degrees of freedom (4.18)            nt|t = 2.000 2.960 3.901 
  weight on squared prediction error (4.22) λt = 0.500 0.338 0.256 
                 deviation of standardized squared prediction error from prior relative  

  variance ( )[ ]2
1|

2
1|

2
−− − tttyce τσ  = -8.532 -2.713 2.567 

  EWMA for variance (4.22)                     2
|ttτ  = 4.734 3.817 4.475 

 
2.  Transition and prior for the next observation    
 2.1.  Prior precision      

  EWMA for variance (4.22)  2
|1 tt+τ = 4.734 3.817 4.475 

  degrees of freedom (4.19)  nt+1|t = 1.960 2.901 3.823 
 2.2.  For process average     
  mean (4.23)  xt+1|t = -17.081 -18.092 -17.040 

  conditional  variance (4.24)  2
|1 tt+σ  = 1.008 0.512 0.349 

                      precision  2
|1

−
+ ttσ  = 0.992 1.953 2.868 

  sample standard deviation                          st+1|t = 2.185 1.398 1.249 
 
 

Similarly, the initial value of the EWMA for variance 2
0|1τ  was chosen as 32 just by 

eying Figure 4.1.  It was assigned 1 degree of freedom (n1|0) to indicate that we are 

assuming this method of estimation is roughly equivalent to one single good number.  

Thus, 2
0|1τ  = 9.  As for the prior for the mean, for t > 1, we get 2

1| −ttτ  and nt|t–1, from step 

2.1 at the bottom of Table 4.2.  Next, the sample standard deviation for xt , st|t–1, is 

computed per (4.25) as the square root of the product of the EWMA for variance and the 

conditional variance parameter per (4.25), producing s1|0 = 75.  We compute a confidence 
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interval about xt|t–1 using a Student’s t distribution with nt|t–1 degrees of freedom with 

scale factor st|t–1.  At t = 1, we have 1 degree of freedom, which produces 212.2 as the 

0.9985 quantile of the relevant Student’s t distribution.  This times s1|0 = 75 is 15,915;  we 

add and subtract this from x1|0 = 0 to get the corresponding confidence limits in Table 4.2.  

This produces the inner pair of dashed lines in Figure 4.2.1.   

With the prior specified for each step, we now proceed as outlined in Figure 4.4 to 

write down the predictive distribution, step 1.1a.  The predictive mean ft is copied from 

the prior mean xt|t–1, and the predictive conditional variance parameter 2
1| −tyσ  is the sum of 

the prior and observation variance parameters, which produces 626 for the first 

observation.  The square root of the product of the EWMA for variance 2
1| −ttτ  and the 

predictive conditional variance parameter 2
1| −tyσ  gives us the predictive sample standard 

deviation sy|t–1.  For t = 1, this is 75.06, slightly larger than s1|0;  after t = 1, the predictive 

sample standard deviation sy|t–1 is noticeably larger than st|t–1 because the prior quickly 

becomes more informative than a single observation;  for t = 1, the opposite is true.  The 

predictive sample standard deviation is the solid line in Figure 4.2.2.   

To get a 99.7% tolerance interval for the new observation and for the absolute 

prediction error, we repeat the same logic as for the confidence interval for the prior 

mean.  This gives us the outer set of dashed lines in Figures 4.2.1 and 4.2.2.  A 

confidence interval for the predictive sample standard deviation is obtained by referring it 

to a chi-square distribution.  This produces the inner pair of dashed lines in Figure 4.2.2.   

We now proceed to step 1.1b, computing the posterior conditional precision 

parameter as the sum of the prior and observation precision parameters.  The conditional 
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posterior variance parameter is the reciprocal of the corresponding precision parameter.  

Next, in step 1.1c we compute the weight on the last observation, the Kalman gain, which 

per (4.13) is the posterior variance times the observation precision.  For the first 

observation, this is 0.998, reflecting the fact that the first observation is substantially 

more informative than our barely informative prior.  If the prior had been completely non-

informative, the prior precision would have been exactly 0, in which case the Kalman 

gain would have been exactly 1.  For t = 2, the Kalman gain is 0.502.  Even though the 

posterior from t = 1 is slightly more informative than a single observation, the migration 

with variance parameter 2
wσ  = 0.01 makes the prior for t = 2 slightly less informative than 

a single observation.  Similarly, the Kalman gain for the third observation is slightly 

greater than 1/3;  with ρ2 = 22
vw σσ  = 0.01, the Kalman gain continues down to an 

asymptote at 0.0951;  see (3.21) in section 3.4 above.   This completes the preparations 

that could potentially be performed in real-time applications before the observation 

actually arrived.   

With the new observation in hand, we first compute the prediction error et per 

(4.16), step 1.2a.  This is used to update both the EWMA for mean and for variance.  To 

prepare for updating the EWMA for variance, we square this and divide by its 

corresponding conditional variance, obtaining 0.468 for t = 1.   

We also include here the Student’s t log(likelihood).  This is not needed when 

computing only one EWMA in isolation.  However, there are many uses for likelihood, 

and it is important to note that the appropriate likelihood in this case rests on the marginal 
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predictive distribution for the next observation, after integrating out the unknown relative 

precision φ t.   

Step 1.2b, (4.17), tells us to multiply the prediction error by the Kalman gain and 

add to the prior mean to get the posterior mean.  Similarly, in step 1.2c, we add 1 to the 

prior degrees of freedom to get the posterior degrees of freedom, which is 2 for t = 1.  We 

next compute the weight on the last standardized squared prediction error as the 

reciprocal of the posterior degrees of freedom, per (4.22).  This gives us 0.5 for the first 

observation, which is consistent with our assumption that the prior has the information 

content of one observation (n1|0 = 1).  We use these numbers to complete the computation 

of the posterior EWMA for variance, obtaining 2
|ttτ  = 4.734 for t = 1.  This completes step 

1.   

It remains to modify the posterior to account for anticipated migration prior to the 

next observation.  Per (4.22), 2
|1 tt+τ  = 2

|ttτ .  However, the degrees of freedom are 

discounted by the factor δ.  For t = 1 with δ = 0.98 this discounts the posterior degrees of 

freedom from 2 to 1.96 for the prior at t = 2.  Per (4.23), the future prior mean 1| −ttx  for t = 

2 is equal to the present posterior mean xt+1|t = xt|t = ( )081.17−  for t = 1.  Similarly, the 

future prior variance parameter is the posterior plus migration variance parameters, giving 

us 1.008 for t = 1.  We reciprocate this to get the prior precision parameter.  For 

reference, we also compute the corresponding sample standard deviation as the square 

root of the product of the prior EWMA for variance and the conditional variance 

parameter, which is st+1|t = 2.185 for t = 1.   

 



Foundations of Monitoring  

© 2001 Graves and Bisgaard  4-25 Foundations4-ewma2.doc:  11/26/01 

4.3.  Discussion  

We believe that this discussion of a Bayesian EWMA for mean and variance 

provides another illustration of the power of Bayesian sequential updating for designing 

monitors.  Other procedures for monitoring mean and variance have previously appeared 

in the literature, but without such obvious ties to a unifying principle for designing 

monitors.  For example, Gan (1995) compared four schemes proposed for simultaneous 

monitoring of center and variability.  These included a Cusum and EWMAs of powers of 

observations and log(standard deviation).  It would, of course, be interesting to extend 

Gan’s study to include the scheme considered here.  Beyond this, we suspect that 

Bayesian sequential updating considering various non-normal distributions might produce 

monitoring schemes reasonably well approximated by the alternatives Gan considered.  

Such research could help in two ways.  First, it could help people design monitors based 

on data analysis suggesting alternative distributions for observations and transitions, in 

the spirit of Box (1980) and Chen and Box (1990).  Second, it would help further the 

development of a general theory for monitor design.  We shall leave this for future 

research.   
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