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A Bayesian EWMA for Mean and Variance  

 

ABSTRACT 

We obtain simultaneous exponentially weighted moving averages (EWMAs) for mean 

and variance as the Bayesian prior for the next noisy observation of a normal random walk, 

where the information (reciprocal variance) of migration and noise have a common factor whose 

reciprocal follows a gamma-beta random walk.  This procedure has applications in finance as 

an alternative to the popular ARCH / GARCH models, in addition to physical processes such 

as wear out and automotive misfire monitoring.  The procedure is derived by applying Bayesian 

sequential updating (1.  Observation, 2.  Transition).   

 

KEY WORDS:  Exponentially weighted moving average;  Bayesian Sequential Updating;  On-

board diagnostics (OBDs);  autoregressive conditional heteroscedasticity (ARCH);  misfire 

detection;  wear out;  fast initial response (FIR).   

 

1.  INTRODUCTION  

This article describes a method for monitoring a process with changing mean and 

variance.  An example appears in Figure 1.  Somewhat similar images appear in financial and 

economics data and in data from many physical processes.  This example presents the angular 

acceleration after 250 firing events in cylinder 4 in a V-8 engine.  The plant (i.e., system 

monitored) was decelerating during the first half of the period shown here.  The latter half shows 
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the effect of requested acceleration combined with misfires:  We see increases in both the 

variability from one observation to the next and in the apparent background rate of drift.   

(Figure 1 about here) 

Data on stock prices sometimes exhibit behavior similar to Figure 1:  Surprising news 

about a company bursts upon investors, leading to a period of increased volatility in the price 

per share.  Similar behavior is exhibited by many physical systems, including manufacturing 

processes.  A piece of equipment (“plant”) performs in a stable manner until a component 

crosses a deterioration threshold that degrades the consistency of performance of the plant, 

leading to an increase in both the short- and long-term variability.  Figure 1 presents the angular 

acceleration accompanying 250 firing events for cylinder 4 measured at the front of a crankshaft 

of a V-8 engine.  For almost the first half of the period portrayed here, the plant appears to be 

operating in a relatively stable mode with modest variability.  Suddenly, we see a substantial 

jump followed by a period of elevated instability.  During the initial, stable period, the vehicle is 

decelerating.  Roughly 20% of the way through Figure 1, the engine begins misfiring occasionally 

on all cylinders due to inadequate spark.  However, the misfires are not apparent in the figure 

until the throttle is opened roughly half way through Figure 1, whereupon the gap between 

complete and incomplete combustion generates the instabilities we see.   

In this article, we will model these observations with Bayesian exponentially weighted 

moving averages (EWMAs) for mean and variance, discussed in Section 2.  These are simple 

and elegant tools suitable for many applications where better modeling of variability may help 

improve understanding of the behavior of the plant.  For misfire detection, this model might 

provide a bridge towards more sophisticated models that could aid in fault isolation [which 
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cylinder(s) are misfiring] as well as mere detection of a misfire problem.  The results of applying 

these tools to the data of Figure 1 appear in Figure 2.  The EWMA for mean appears as the 

bold line in Figure 2.1, substantially smoothing the data.  Two sets of dashed lines about this 

mean give 99.7% confidence bounds for the mean and for the next observation;  these are 

Student’s t confidence bounds with degrees of freedom reflecting the equivalent number of 

observations incorporated in the relevant inverse chi-square distribution of the EWMA for 

variance.   

(Figure 2 about here) 

Similarly, the dark solid line in Figure 2.2 presents the square root of the EWMA for 

variance of the predictive distribution.  It starts large because the initial uncertainty about the 

mean at first use implies substantial uncertainty about the first observation.  Information quickly 

accumulates about the location of the mean, which then allows information to accumulate about 

the variability as well.  A pair of dashed lines close to the solid line give 99.7% confidence 

bounds for the uncertainty in the estimated predictive standard deviation, using as before the 

relevant inverse chi-square distribution of the EWMA for variance.  A third dashed line gives a 

Student’s t 99.7% upper bound for the absolute value of the prediction error.   

We develop tools for this application using the two-step Bayesian sequential updating 

process (1.  Observation and Bayes’ theorem;  2.  Transition and prior for the next observation) 

previously used to develop a Bayes-adjusted Cusum to detect an abrupt jump from a simple 

“good” to a simple “bad” hypothesis (Graves, Bisgaard and Kulahci 2002a), a Bayesian 

EWMA for mean only (Graves, Bisgaard and Kulahci 2002b) and more general Kalman filter 

monitors to isolate as well as detect problems (Graves et al. 2001).  The previous Bayesian 
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EWMA (Graves, Bisgaard and Kulahci 2002b) assumes that the observation error variance is 

estimated from studies of gage repeatability and reproducibility, while the migration variance is 

estimated from reliability data.  In contrast, we here assume that these variances are unknown 

and may change over time, although their ratio is assumed known.  If the rate of change in the 

variance is zero, it provides a natural Bayesian foundation for estimating the system variance 

assuming a known ratio between the migration and observation variances.   

This applies more general theory developed by West, Harrison, and Pole (West and 

Harrison 1999 and Pole, West and Harrison 1994) with two primary differences:  First, they do 

not identify their evolving precision with an EWMA for variance;  because of the widespread 

understanding of variances, standard deviations and EWMAs, we think this is a useful 

innovation.  Second, they discuss the theory in terms of Student’s t distributions, largely glossing 

over the normal-gamma origins of their Student’s t distributions.  We find this mode of 

reasoning difficult to follow, because Student’s t distributions do not have the obvious 

convolution and Bayesian conjugate properties of normal distributions.   

Therefore, Bayesian sequential updating is applied here to normal-gamma distributions 

in a cycle outlined briefly in Figure 3 and discussed in more detail in Section 2.  Student’s t 

confidence intervals for the means are then developed in Section 3 by integrating out a common 

gamma precision factor.  A few sample computations are presented in Section 4, and 

concluding remarks appear in Section 5.   

(Figure 3 about here) 

The computations described below may appear more complicated than they really are.  

Applications requiring only smoothed estimates of mean and variability may need only EWMAs 
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of mean and of squared prediction error (as a proportion of the relative predictive variance).  If 

no fast initial response capability is needed, weights on the last observation and statistical control 

limits can be constructed with effort comparable to current EWMA procedures.  The sample 

computations in Section 4 include several steps that merely involve renaming certain quantities.  

For example, the posterior mean at each point in time is numerically identical to the prior mean 

of the process at the arrival of the next observation and to the forecast mean for that 

observation, although confidence intervals associated with these three concepts are different.  

Maintaining a notational distinction helps us understand and discuss the different confidence 

intervals;  it also facilitates applications to more general, e.g., Kalman filtering, situations where 

posterior, prior, and forecast means may be different.   

Part of the complexity is due to the multitude of distributions involved:  At each point in 

time, in addition to the basic migration and observation models, we have a predictive distribution 

and both prior and posterior distributions.  To manage this complexity, we adopt a double 

subscript notation, e.g., 1| −ttx  for a prior and x t| t for a posterior mean for an unknown state x t .  

[Harvey (1989) used a similar notational convention but not as extensively as we do here.]   

 

2.  BAYESIAN UPDATING WITH A DRIFTING MEAN AND VARIANCE 

In this section, we develop the theory for a Bayesian exponentially weighted moving 

average (EWMA) for both mean and variance.  The basic formulae are outlined in Table 1.  

This provides a standard EWMA for both mean and variance with the weight on the last 

observation changing with time, converging to an asymptote as information accumulates on the 
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state of the process.  As with the Bayesian EWMA for mean only, discussed by Graves, 

Bisgaard and Kulahci (2002b), this provides a very sensible fast initial response (FIR), adjusting 

the weight on the last observation to balance the relative information content of prior and 

observation.  The theory follows naturally from the two-step Bayesian sequential updating 

procedure outlined in Figure 3.   

(Table 1 about here) 

Step 1.  Observation and Bayes’ Theorem.  As each new observation arrives, the 

first step is to combine the information it contains about the condition of the plant (i.e., the 

process monitored) with the prior from previous experience.  Then Step 2 will modify the 

resulting posterior to account for a transition in the plant anticipated before the next observation.   

Step1.0.  Model Assumptions.  Specifically, at first use, the condition of the plant (x1 | 

φ 1) is assumed to follow N(x1|0, 2
0|1σ /φ 1), where φ 1 is assumed to follow a gamma distribution, 

Γ(n1|0/2, d1|0/2).  For future reference, we recall that ( ) ( ) ( )11111, φφφ fxfxf = , where  
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(We often omit constants required to make probability densities integrate to one when they are 

not needed to understand what we are doing and may obscure our message.)   

At each point in time, we observe  
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 yt = x t + v t , where v t ~ N(0, 2
vσ /φ t),   

so   (4) 
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Just before this observation, the prior for (x t , φ t  | Dt–1) is {N(x t| t–1, 
2

1| −ttσ /φ t), Γ(nt| t–1/2, 

1| −ttd /2)}, where Dt–1 = { yt–1, yt–2,..., y1, x1|0, 
2
0|1σ , n1|0, d1|0}, the history available at time 

1−t :   
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When t = 1, (5) - (7) is provided by the initial prior (1) - (3);  later, it is provided by the output 

of Step 2, transition, after the previous observation.   

As outlined in Figure 3, when a new observation arrives, this prior is converted to a 

posterior (Step 1), and the posterior is then modified to model a transition, producing a prior for 

the next observation (Step 2).  We shall see that the resulting posterior and the new prior are 

both also normal-gamma, which we write as {N(x t| t, 
2
|ttσ /φ t), Γ(nt| t/2, ttd | /2)} and {N(x t+1| t, 

2
|1 tt +σ /φ t+1), Γ(nt+1| t/2, ttd |1+ /2)}, respectively.   

In particular, the transition in location is modeled as  
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 x t+1 = x t + wt ,   wt ~ N(0, 2
wσ /φ t). (8) 

Meanwhile, the transition for φ t involves discounting Γ(nt| t/2, ttd | /2) to Γ( 2|1 ttn + , 2|1ttd + ) for 

φ t+1, with nt+1| t  = ttn |δ  and dt+1| t  = ttd |δ , for some δ with 0 < δ < 1.  

It seems appropriate at this point to discuss terminology.  A squared reciprocal scale 

parameter such as φ t  is sometimes called a precision (e.g., DeGroot 1970, p. 167;  Bernardo 

and Smith 2000, pp. 121, 139).  Bernardo and Smith (2000) discuss normal-gamma 

distributions like those we consider here but apparently without assigning names to parameters 

such as 2
0|1σ  and φ 1.  In this article, at each point in time, the prior, posterior, observation, 

migration, and predictive distributions will all be normal-gamma.  For t fixed, the parameter φ t 

will be the same in all of these distributions, though this parameter may change over time.  To 

remind ourselves of this repeated use of φ t , we shall call it a “common precision factor”;  by 

extension, we shall call its reciprocal 1−
tφ  a “common variance factor”.   

With this, we see that 2
0|1σ  is the variance of x1 as a proportion of the common variance 

factor 1
1
−φ ;  we will therefore call 2

0|1σ  the “relative variance” of x1 for short.  We shall describe 

2
0|1

−σ  as the “information” regarding x1 as a proportion of the common precision factor 1φ , or 

the “relative information” for short.  We call this “relative information” rather than “relative 

precision” to emphasize the fact that the observed information, being the negative second 

derivative of the log(density) with respect to x1, adds with Bayes’ theorem (Graves 2002).  This 

additive property of the observed information seems to provide greater insight for potentially 
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non-normal observations or with non-linear applications than the concept of a “precision”, being 

a squared reciprocal scale factor.   

We now describe the use of Bayes’ theorem in this context.  To simplify the 

presentation of details, we break this activity into two substeps, preparing and updating.   

Step 1.1.  Preparing.  We further divide “preparing” into three substeps:  (1.1a) 

Predictive Distribution, (1.1b) Posterior Information and Variance, and (1.1c) Kalman Gain, as 

we now explain.  

Step 1.1a.  Predictive Distribution.  We want the marginal distribution (yt | φ t , 1−tD ).  

From (4), we see that yt is the sum of two independent, normally distributed random variables, 

so (yt | φ t , 1−tD ) is also a normal distribution, with mean and variance being the sums of the 

means and variances of x t and v t:   

 ( yt | φ t , Dt–1) ~ N( ft, 
2

1| −tyσ /φ t),  

where  
 ft = x t| t–1,  (9)  
and  
 2

1| −tyσ  = 2
1| −ttσ  + 2

vσ . (10) 

[Note that  1−
tφ  is a common factor of the variances of (x t | φ t , Dt–1) and the observation yt per 

(4);  it is therefore also a factor of the predictive variance.] 

Step 1.1b.  Posterior Information and Variance.  Fisher’s efficient score [derivative 

of the log density, l(...)] of the posterior is the prior score plus the score from the data:   
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∂
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(Graves 2002).  From this, we see that the posterior score is linear in x t  with φ t as a factor and 

therefore can be written ( )[ ]2
|| tttttt xx σφ −−  for appropriately chosen x t| t  and 2

|ttσ .  The 

integral of this gives us the logarithm of the posterior density as a parabola up to an additive 

constant.  Since the support of x t runs over the entire real line, this proves that the posterior is 

N(x t| t , ttt φσ 2
| ).   

To determine 2
|ttσ , we take another derivative of (11).  This gives us “Bayes’ Rule of 

Information” (Graves 2002) that the posterior (observed) information is the sum of the 

information from the prior and the data.  Apart from the common precision factor φt , this gives 

us the following:   

 22
1|

2
|

−−
−

− += vtttt σσσ . (12) 

Step 1.1c.  Kalman Gain.  We now let x t = 0 in (11) and solve for x t| t  as follows:   

 x t| t = { }tvtttttt yx 2
1|

2
1|

2
|

−
−

−
− + σσσ ,  (13)  

The weight on the last observation yt in (13) is called the Kalman gain and will be denoted as 

follows:   

 Kt = 22
|

−
vtt σσ .  (14)  

To use Kt in (13), we first use (12) to obtain  

 22
|

2
1|

−−−
− −= vtttt σσσ .  

We substitute this with (14) into (13) to get  

 x t| t = ( ){ }tvttvtttt yx 2
1|

22
|

2
|

−
−

−− +− σσσσ   

 = ( )1|1| −− −+ tttttt xyKx .  (15)  
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For plants with constant observation and transition variances, all the computations of 

substep 1.1 can be done offline except for the mean of the predictive distribution, ft .  With or 

without those offline computations, if these preparations are done prior to the arrival of the latest 

observation, yt , it can shorten slightly the time required to update our knowledge of the state of 

the plant.   

Step 1.2.  Updating.  In “updating”, we (a) compute the prediction error and use that 

to compute (b) the posterior mean and (c) the posterior distribution of the common precision 

factor.   

Step 1.2a.  Prediction Error.  When the observation yt arrives, we compute the 

prediction error as,  

 et = yt – ft.  (16)  

Step 1.2b.  Posterior Mean.  With the prediction error in hand, we multiply it by the 

Kalman gain and add the product to the prior mean to obtain the posterior mean per (15), as  

 x t| t = tttt eKx +−1| .  (17)  

Step 1.2c.  Posterior Precision.  We now combine the predictive distribution (9) - 

(10) with the prior for the common precision factor (6) as  

 ( ) ( ) ( )111 ,, −−− = tttttttt DfDyfDyf φφφ ( ) ( )[ ]






 +−∝ −−

−−
1|

2
1|

21

2
exp1|

tttyt
tn

t dett σ
φ

φ   

 ( ) { }2exp |
22|

ttt
n

t dtt φφ −∝ − ,  

where  
nt| t = nt| t–1 + 1 

and   (18) 
( ) 1|

2
1|| −− += tttyttt ded σ .   
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But since f(φ t | Dt) = f(φ t | yt, Dt–1) = f(yt, φ t | Dt–1) / f(yt, | Dt–1) ∝ f(yt, φ t | Dt–1), we see that 

(φ t | Dt) ~ Γ(nt| t/2, dt| t/2).  

This completes Step 1, observation, in Bayesian sequential updating as outlined in 

Figure 3.  Next, we model the transition that we assume will occur before the next observation, 

per Step 2.   

Step 2.  Transition and Prior for the Next Observation.  Given (x t | φ t, Dt) and 

(φ t | Dt) from Step 1, we consider the transition for the common precision factor φ t to φ t+1 and 

for the location x t to x t+1.  

Step 2.1.  Prior Precision.  Following Pole, West and Harrison (1994), West and 

Harrison (1999), and Shephard (1994), we model a potential change in precision by 

discounting the chi-square / gamma degrees of freedom and scale factor by a constant δ, with 0 

< δ < 1, so  

 (φ t+1 | Dt) ~ Γ(nt+1| t / 2, dt+1| t / 2),  
where  

nt+1| t = δ nt| t ,  
and   (19) 

dt+1| t = δ dt| t . 

Pole, West and Harrison (1994, p. 61) describe this step by saying that, “no formal model is 

specified for scale evolution, the scale prior being directly defined as a discounted version of the 

previous posterior.”  West and Harrison (1999, p. 361) report that this particular variance 

discounting can be justified by assuming that  

 φ t+1 = δφγ tt ,  (20) 

where (γt |Dt) ~ Beta[δ nt| t/2, (1 – δ )nt| t/2];  for this distribution, E(γt |Dt) = δ , so E(φt+1 |Dt) = 

φt . 
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It may help to understand δ  to note that [using (18) and (19)]  

 nt | t → ( )δ−11   as t → ∞  

(West and Harrison, p. 362).  However, since we are usually more interested in the future than 

the past, we substitute this into (19) to get the following:   

 nt+1 | t → ( )δδ −1   as t → ∞ (21) 

Thus, selecting δ  is equivalent to specifying the degrees of freedom in the steady-state chi-

square distribution for the common precision factor φ t .   

Expression (20) can be modified in a variety of ways to model, e.g., the increase in 

volatility of stock prices accompanying an increase in trading volume (e.g, Lamoureux and 

Lastrapes 1990) or the effect in Figure 1 of a change in throttle angle.  However, with or 

without (20) and possible refinements, we must still ignore the difference between φ t and φ t+1 in 

modeling the transition from x t  to x t+1, which is part of Step 2.2.   

Expressions (18) - (19) are equivalent to an EWMA for the common variance factor 

1
1

−
+tφ , which we define as 2

|1 tt+τ  = tttt nd |1|1 ++ .  By (19) and (18), this is   

2
|1tt+τ  = 

tt

tt

n
d

|

|

δ
δ

 = 2
|ttτ  = 

( )
11|

2
1|1|

+

+

−

−−

tt

tyttt

n

ed σ
 = 

( )
11|

2
1|

2
1|1|

+

+

−

−−−

tt

tyttttt

n

en στ
,  

so  
2

|1tt+τ  = ( ) ( )2

1|
2

1|1 −− +− tyttttt e σλτλ ,  

where   (22) 
λt = 1/(nt| t–1 + 1) = 1/nt| t .   

We will use this to evaluate variability in Section 3 not conditioned on the unknown common 

precision factor φ t .   
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Step 2.2.  Prior Mean and Variance.  Given the posterior (x t | φ t , Dt) from Step 1, 

with the transition (8), we get (x t+1 | φ t, Dt) ~ N(x t+1| t , ttt φσ 2
|1+ ), where  

 x t+1| t = x t| t,  (23)  
and  
 22

|
2

|1 wtttt σσσ +=+ .   (24) 

When we return to Step 1 for the next observation, we replace φ t  with  φ t+1.  If δ = 1, the 

common precision factor is assumed to be constant, so φ t+1 = φ t, and this step is obvious.  If δ 

< 1, it is not clear (at least to the present authors) that our model assumptions necessarily imply 

that (x t+1 | φ t+1, Dt) ~ N(x t+1| t , 1
2

|1 ++ ttt φσ ).  However, even if it is not strictly true, it seems to 

be a reasonable approximation for many situations (at least with δ close to 1), as witnessed by 

its use in multivariate state space applications discussed, e.g., by Pole, West and Harrison 

(1994) and West and Harrison (1999).   

We now substitute (24) into (12) and the result into (14) to obtain the following 

recursion for Kt:   

 ( ){ }1
1

1
21 ++=

−
−

−
tt KK ρ ,   (25)  

where 2ρ  = 22
vw σσ .  [Graves, Bisgaard and Kulahci (2002b, sec. 5) discussed the behavior 

of Kt over time assuming φ t = 1.  However, since φ t cancels, their analysis of Kt applies here as 

well.]   

This completes Step 2.  The resulting prior output from one point in time {N(x t+1| t, 

2
|1tt +σ /φ t+1), Γ(nt+1| t/2, dt+1| t/2)} becomes an input prior for Step 1.1,  {N(x t| t–1, 

2
1| −ttσ /φ t), 

Γ(nt| t–1/2, dt| t–1/2)}, at the next point in time.  In this way, observations are processed 
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sequentially as they arrive.  If the model (1) - (8) is correct, then the prior {N(x t+1| t, 
2

|1tt +σ /φ t), 

Γ(nt+1| t/2, dt+1| t/2)} summarizes all the information in Dt = {yt, yt–1, ..., y1, x1|0, σ1|0} about the 

state of the plant at time 1+t  [ignoring the approximation involved in replacing φ t by φ t+1 

following (23) - (24)].   

The most important expressions in this section are summarized in Figure 4.  

Unfortunately, these results cannot be used directly, because most are conditioned upon the 

unknown common precision factor φ t .  We next integrate out φ t , obtaining Student’s t 

marginals (Section 3).  The results are applied to the data of Figure 1 in Section 4 before a 

summary discussion in Section 5.   

(Figure 4 about here) 

 

3.  STUDENT’S t CONFIDENCE INTERVALS 

The results of Section 2 cannot be used directly, because they involve the unknown 

common precision factor φ t .  To apply the results, we must integrate out φ t , obtaining Student’s 

t marginals from normal-gamma distributions discussed in Section 2.   

The normal-gamma density as in (3) and (7) is as follows:   
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We integrate out φ to get the following (Bernardo and Smith 2000, sec. 6.2.4):   
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where  
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 s2 = ( )nd2σ  = 22τσ  and nd=2τ .  

We summarize this by observing that x has a Student’s t distribution with n degrees of freedom 

and with center and scale of µ and s,  

 x ~ t(µ, s2; n).  

Applying this to the prior (7) gives us  

 (x t | Dt–1) ~ t(x t| t–1, 2
1| −tts ; nt| t–1),   

with   (26) 
 st| t–1 = σt| t–1τt| t–1,   

and 2
1| −ttτ  is the common variance factor EWMA (22).  This was used in Figure 2.1 to 

determine the inner set of dashed lines as a 99.7% confidence interval for ( )1| −tt Dx .   

Similarly, for the predictive distribution not conditioned on the unknown precision φ t , 

we get the following from (9) - (10) and (6):   

 (yt | Dt–1) ~ ( )1|
2

1| ;, −− tttyt nsft ,   

with   (27) 
 sy| t–1 = σy| t–1τt| t–1.   

This was used to compute the outer dashed lines in Figures 2.1 and 2.2.  The inner pair of 

dashed lines in Figure 2.2 utilize the (0.0015 and 0.9985) quantiles of the gamma distribution of 

(19) to place confidence limits on sy| t–1.   

We now discuss the computation of a few of the numbers plotted in Figure 2.   
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4.  SAMPLE COMPUTATIONS 

The sample computations described in this section are more complex than required for 

many applications.  For example, the forecast for the next observation ( ft), the current prior 

mean (x t| t–1), and the previous posterior mean (x t–1| t–1) are conceptually three different quantities 

that are numerically equal in the present context.  The distinction is visible in the different 

confidence intervals associated with the three concepts.  In Figure 2, dashed lines represent 

confidence intervals based on the forecast and the prior.  The confidence intervals associated 

with the posterior are slightly narrower than the confidence intervals for the prior and are not 

shown because we are more concerned with the future than the past (at least for Figure 2).  This 

careful distinction in notation has helped us understand the EWMA and generalizations to, for 

example, Kalman filtering, where ft , 1| −ttx , and 1|1 −− ttx  may all be distinct.  These distinctions are 

maintained in this section, though they were suppressed in Table 1.   

In the present model, var(yt | x t , φ t) = tv φσ 2  per (4) and var(x t | 1−tx , φ t) = tw φσ 2  

per (8) [ignoring the change from 1−tφ  to φ t discussed following (24)].  Since there are no other 

constraints on φ t , we can without loss of generality set 2
vσ  = 1.  With this choice, φ t  becomes 

the observation precision, so 2
1| −ttτ  estimates the observation variance, and 2

wσ  = 

( ) ( )tttt yx φφ |var|var  = 2ρ  = the migration variance as a proportion of the observation 

variance.   

With this choice, Table 2 begins by recording that the relative observation variance 2
vσ  

and information 2−
vσ  are both 1.  Similarly, Table 2 reports that the relative migration variance 
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2
wσ  is assumed to be 0.01, while the variance discount factor δ = 0.98.  As discussed by 

Graves, Bisgaard and Kulahci (2002b), the migration variance 2
wσ  = 2ρ  is related to reliability 

and is equivalent to specifying the degree of smoothing.  Meanwhile, per (21), δ = 0.98 

corresponds to an asymptotic degrees of freedom of ∞+∞ |1n  = 49, roughly one fifth of the 

observations in Figures 1 and 2.   

(Table 2 about here) 

The first row in the body of the table gives the first three observations yt plotted in 

Figure 1.  The initial prior for the mean per (1) is specified in terms of the mean 0|1x  and 

standard deviation 0|1σ .  A rough estimate obtained simply by looking at Figure 1 is 0|1x  = 0 

and 0|1σ  = 25;  this latter number means that 2
0|1σ  = 625 and 2

0|1
−σ  = 0.0016.  Better estimates 

could be obtained if the application justified the extra expense.  This follows because monitors 

are only designed where previous experience suggests the possibility of problems (Graves, 

Bisgaard and Kulahci 2002b).  This experience provides an objective external reference 

population, which could be accessed to provide better estimates of parameters such as 0|1x  and 

0|1σ .   

For later observations, x t| t–1, 
2

1| −ttσ , and 2
1|

−
−ttσ  are taken from Step 2.2 at the bottom of 

Table 2.  We carry both relative variance and information parameters in Table 2 because a sum 

of independent random variables requires addition of variances, while “Bayes’ Rule of 

Information” (Graves 2002) tells us to add the (observed) information.   
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Similarly, the initial value of the EWMA for variance 2
0|1τ  was chosen as 32 just by eying 

Figure 1.  It was assigned 1 degree of freedom ( 0|1n ) to indicate that we are assuming this 

method of estimation is roughly equivalent to one single good number.  As for 0|1x  and 0|1σ , 

better estimates for 2
0|1τ  and 0|1n  could be obtained if the application justified the effort.   

Thus, 2
0|1τ  = 9.  For t > 1, we get 2

1| −ttτ  and nt| t–1, from Step 2.1 at the bottom of Table 

2.  Next, the sample standard deviation for x t , st| t–1, is computed per (26) as the square root of 

the product of the EWMA for variance and the relative prior variance per (26), producing s1|0 = 

75.  We compute a confidence interval about x t| t–1 using a Student’s t distribution with nt| t–1 

degrees of freedom with scale factor st| t–1.  At t = 1, we have 1 degree of freedom, which 

produces 212.2 as the 0.9985 quantile of the relevant Student’s t distribution.  This times s1|0 = 

75 is 15,915;  we add and subtract this from x1|0 = 0 to get the corresponding confidence limits 

in Table 2.  This produces the inner pair of dashed lines in Figure 2.1.   

With the prior specified for each step, we now proceed as outlined in Figure 4 to write 

down the predictive distribution, Step 1.1a.  The predictive mean ft is copied from the prior 

mean x t| t–1, and the relative predictive variance 2
1| −tyσ  is the sum of the relative prior and 

observation variance parameters, which produces 626 for the first observation.  The square 

root of the product of the EWMA for variance 2
1| −ttτ  and the relative predictive variance 2

1| −tyσ  

gives us the predictive sample standard deviation sy| t–1.  For t = 1, this is 75.06, slightly larger 

than s1|0;  after t = 1, the predictive sample standard deviation sy| t–1 is noticeably larger than st| t–
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1, because the prior quickly becomes more informative than a single observation;  for t = 1, the 

opposite is true.  The predictive sample standard deviation is the solid line in Figure 2.2.   

To get a 99.7% tolerance interval for the new observation and for the absolute 

prediction error, we repeat the same logic as for the confidence interval for the prior mean.  This 

gives us the outer set of dashed lines in Figures 2.1 and 2.2.  A confidence interval for the 

predictive sample standard deviation is obtained by referring it to a chi-square distribution with 

1| −ttn  degrees of freedom.  This produces the inner pair of dashed lines in Figure 2.2.   

We now proceed to Step 1.1b, computing the relative posterior information as the sum 

of the relative information from prior and observation.  The relative posterior variance is the 

reciprocal of the corresponding relative information.  Next, in Step 1.1c we compute the weight 

on the last observation, the Kalman gain, which per (14) is the relative posterior variance times 

the relative information from the observation.  For the first observation, this is 0.998, reflecting 

the fact that the first observation is substantially more informative than our barely informative 

prior.  If the prior had been completely non-informative, the relative prior information would 

have been exactly 0, in which case the Kalman gain would have been exactly 1.  For t = 2, the 

Kalman gain is 0.502.  Even though the posterior from t = 1 is slightly more informative than a 

single observation, the migration with variance parameter 2
wσ  = 0.01 makes the prior for t = 2 

slightly less informative than a single observation.  Similarly, the Kalman gain for the third 

observation is slightly greater than 1/3;  with ρ2 = 22
vw σσ  = 0.01, the Kalman gain continues 

down to an asymptote at 0.0951, which we get from letting Kt = 1−tK  = ∞K  in (25) (Graves, 
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Bisgaard and Kulahci 2002b, sec. 5).  This completes the preparations that could potentially be 

performed in real-time applications before the observation actually arrived.   

With the new observation in hand, we first compute the prediction error et per (16), 

Step 1.2a.  This is used to update the EWMAs for both mean and for variance.  To prepare for 

updating the EWMA for variance, we square this and divide by its corresponding relative 

variance, obtaining 0.468 for t = 1.   

We also include here the Student’s t log(likelihood).  This is not needed when 

computing only one EWMA in isolation.  However, there are many uses for likelihood.  For 

example, West and Harrison (1999, sec. 11.4.2) recommend the use of Bayes’ factors for 

evaluating one model relative to another;  their use of Bayes’ factors is essentially equivalent to a 

traditional one-sided cumulative sum of log(likelihood ratio) or to the Bayes-adjusted Cusum of 

Graves, Bisgaard and Kulahci (2002a).  For many applications, an appropriate likelihood rests 

on the marginal predictive distribution for the next observation, after integrating out the unknown 

common precision factor φ t.   

Step 1.2b, (17), tells us to multiply the prediction error by the Kalman gain and add to 

the prior mean to get the posterior mean.  Similarly, in Step 1.2c, we add 1 to the prior degrees 

of freedom to get the posterior degrees of freedom, which is 2 for t = 1.  We next compute the 

weight on the last standardized squared prediction error as the reciprocal of the posterior 

degrees of freedom, per (22).  This gives us 0.5 for the first observation, which is consistent 

with our assumption that the prior has the information content of one observation (n1|0 = 1).  We 
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use these numbers to complete the computation of the posterior EWMA for variance, obtaining 

2
|ttτ  = 4.734 for t = 1.  This completes Step 1.   

It remains to modify the posterior to account for anticipated migration prior to the next 

observation.  Per (22), 2
|1 tt+τ  = 2

|ttτ .  However, the degrees of freedom are discounted by the 

factor δ.  For t = 1 with δ = 0.98 this discounts the posterior degrees of freedom from 2 to 

1.96 for the prior at t = 2.  Per (23), the future prior mean 1| −ttx  for t = 2 is equal to the present 

posterior mean x t+1| t = x t| t = ( )081.17−  for t = 1.  Similarly, the future relative prior variance is 

the relative posterior plus migration variances, giving us 1.008 for t = 1.  We reciprocate this to 

get the relative prior information.  For reference, we also compute the corresponding sample 

standard deviation as the square root of the product of the prior EWMA for variance and the 

relative prior information, which is st+1| t = 2.185 for t = 1.   

 

5.  DISCUSSION 

We believe that this discussion of a Bayesian EWMA for mean and variance illustrates 

the power of Bayesian sequential updating as a general principle for designing monitors;  for 

other applications of this principle, see Graves, Bisgaard and Kulahci (2002a, b) and Graves et 

al. (2001).  Other procedures for monitoring mean and variance have previously appeared in 

the literature, but without such obvious ties to a unifying principle for monitor design.  For 

example, Gan (1995) compared four schemes proposed for simultaneous monitoring of center 

and variability.  These included a Cusum and EWMAs of powers of observations and 

log(standard deviation).  It would, of course, be interesting to extend Gan’s study to include the 
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scheme considered here.  Beyond this, we suspect that Bayesian sequential updating 

considering various non-normal distributions might produce monitoring schemes reasonably well 

approximated by the alternatives Gan considered.  Such research could help in two ways.  First, 

it could help people design monitors based on data analysis suggesting alternative distributions 

for observations and transitions, in the spirit of Box (1980) and Chen and Box (1990).  Second, 

it would help further the development of a general theory for monitor design.  We shall leave this 

for future research.   

We suspect that expression (20)  

( ) ( ) ( )δγφφ ttt logloglog 1 +=+  

provides a fertile foundation for generalizations, modeling the impact on this common precision 

factor of exogenous variables, in the spirit of generalized autoregressive conditional 

heteroscedasticity (GARCH).  With or without these generalizations, we feel that further 

research is needed to understand the extent of the approximation involved in the apparently ad 

hoc transition from (x t+1 | φ t, Dt) ~ N(x t+1| t , ttt φσ 2
|1+ ) to (x t+1 | φ t+1, Dt) ~ N(x t+1| t , 

1
2

|1 ++ ttt φσ ).  This approximation has worked well for West and Harrison (1999) and Pole, 

West and Harrison (1994).  However, it is not clear (at least to the present authors) how well 

this will work with rapid changes in the common precision factor φ t .   

It is relatively straightforward to generalize this work to multivariate state spaces and 

observations with possibly non-normal observations and nonlinear observation and transition 

relationships, provided (a) normal distributions provide adequate approximations for both prior 

and posterior and (b) first order Taylor approximations can be used in the standard ways.  In 
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these situations, the common precision factors, φ t , will still be scalars (see, e.g., West and 

Harrison 1999, sec. 4.6), as will be the accompanying EWMA for variance.  It may be possible 

to use a multivariate normal - Wishart distribution in a similar way (Bernardo and Smith 2000, 

sec. 3.2.5), but this could raise other questions of parsimonious modeling.   
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Figure 1.  A Time Series with Changing Mean and Variability  
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Figure 2.  Example Smoothing of Mean and Standard Deviation  
 

Figure 2.1.  Data and Drifting Mean 

Figure 2.2.  Absolute Prediction Error and 
Smoothed Standard Deviation of Prediction Error 
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Figure 3.  Bayesian Sequential Updating of Mean and Variance  
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Figure 4.  Bayesian EWMA Normal-Gamma Iteration  
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Table 1.  Algorithm for Bayesian EWMA for Mean and Variance  

Assume  
Observation  ( )tvtttt Nvvxy φσ 2,0~,+=  (4) 

Migration  ( )twtttt Nwwxx φσ 2
1 ,0~,+=+  (8) 

EWMA x t | t–1 for mean x t  
 ( ) ttttttttttt eKxyKxKx +=+−= −−+ 1|1||1 1  (17) & (23)  

Prediction error  1| −−= tttt xye  (16) 

Kalman gain  ( ){ }1
2111 −++= tt KK ρ , 222

vw σσρ =  (25) 

EWMA 2
1| −ttτ  for the common variance factor 1−

tφ   

 ( ) ( )2
1|

2
1|

2
|1 1 −−+ +−= tyttttttt e σλτλτ  (22) 

Weight on the last prediction error  ( )11 1| += −ttt nλ  

χ2 / Student’s t degrees of freedom ( )11||1 += −+ tttt nn δ ,  0 < δ < 1 (19) & (18) 

Relative predictive error variance  22
1|

2
1| vttty σσσ += −−  (10) 

Relative prior variance  ( ) 2122
1|

2
|1 wvtttt σσσσ ++=

−−−
−+  (24) & (12) 

Confidence interval for x t via Student’s t 
 ( ) ( )1|

2
1|1|1 ;,~| −−−− tttttttt nsxtDx   

Sample variance for the mean  2
1|

2
1|

2
1| −−− = tttttts τσ  (26) 

Prediction error via Student’s t 
 ( ) ( )1|

2
1|1 ;,0~| −−− tttytt nstDe  

Sample variance for prediction error  2
1|

2
1|

2
1| −−− = tttytys τσ  (27) 
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Table 2.  Illustrative Calculations for Bayesian Sequential Updating  
 
Observation variability: 

(4) relative variance 2
vσ  = 1;  relative information 2−

vσ  = 1 
Transition:   

(8) relative migration variance 2
wσ  = 0.01;  (19) variance discount factor δ = 0.98 

 
Step 
    time  1 2 3
1.  Observation and Bayes' Theorem      
 Observation:  Measured angular acceleration     yt = -17.108 -19.095 -14.985
 1.0.  Prior  (1) - (3), (5) - (7)      
  mean  x t| t–1 = 0.000 -17.081 -18.092

  relative information  2
1|

−
−ttσ  = 0.0016 0.992 1.953

     variance 2
1| −ttσ  = 625.000 1.008 0.512

  EWMA for variance  2
1| −ttτ  = 9.000 4.734 3.817

  degrees of freedom  nt| t–1 = 1.000 1.960 2.901
  sample standard deviation (26)               st| t–1 = 75.000 2.185 1.398
  99.7% confidence interval  
  Student’s t (α = 0.0015) 212.205 19.080 9.316
 for the  upper limit 15915.35 24.606 -5.067
 mean  lower limit -15915.35 -58.767 -31.117
 1.1.  Prepare      
  1.1a.  Predictive distribution     
   mean (9)  ft = 0.000 -17.081 -18.092

   relative variance (10)               2
1| −tyσ  = 626.000 2.008 1.512

   sample standard deviation (27) sy| t–1 = 75.060 3.083 2.402
   99.7% confidence interval    
   Student’s t (α = 0.0015) 212.205 19.080 9.316
   for the  upper limit 15928.10 41.750 4.290
   observation lower limit -15928.10 -75.912 -40.474
    for (absolute prediction error |et|) = 15928.10 58.831 22.382
    for sample standard deviation sy| t–1    

   ( ) 1|1|
22

0015.0 ;0015.0 −−= tttt nns χ  = 3.53×10–6 1.33×10–3 1.54×10–3

   ( ) 1|1|
22

9985.0 ;9985.0 −−= tttt nns χ  = 10.079 6.582 6.487

   upper limit 0015.01| ss ty − 39926.11 84.550 61.279

   lower limit 9985.01| ss ty − 23.643 1.202 0.943
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  1.1b.  Posterior variability (12)     

   relative information                 2
|
−
ttσ  = 1.0016 1.992 2.953

   variance                  2
|ttσ  = 0.998 0.502 0.339

  1.1c.  Kalman gain (14)  Kt = 0.998 0.502 0.339
 1.2.  Update      
  1.2a.  Prediction error (16)                        et = -17.108 -2.014 3.107

  standardize squared prediction error ( )2
1|

2
−tyte σ  = 0.468 2.020 6.384

   log(likelihood) -5.514 -2.460 -2.768
  1.2b.  Posterior mean (17)                        x t| t = -17.081 -18.092 -17.040
  1.2c.  Posterior common precision factor     
   degrees of freedom (18)            nt| t = 2.000 2.960 3.901
       weight on squared prediction error (22) λt =  0.500 0.338 0.256
       deviation of standardized squared prediction error from prior relative  

  variance ( )[ ]2
1|

2
1|

2
−− − tttyte τσ  = -8.532 -2.713 2.567

  EWMA for variance (22)                       2
|ttτ  = 4.734 3.817 4.475

 
2.  Transition and prior for the next observation    
 2.1.  Prior precision      

  EWMA for variance (22)  2
|1 tt+τ = 4.734 3.817 4.475

  degrees of freedom (19)  nt+1| t = 1.960 2.901 3.823
 2.2.  For process average     
  mean (23)  x t+1| t = -17.081 -18.092 -17.040

  relative variance (24)  2
|1 tt +σ  = 1.008 0.512 0.349

                information   2
|1

−
+ ttσ  = 0.992 1.953 2.868

  sample standard deviation                          st+1| t = 2.185 1.398 1.249
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Figure Captions  
 

Figure 1.  A Time Series with Changing Mean and Variability  

 

Figure 2.  Example Smoothing of Mean and Standard Deviation  
 

Figure 3.  Bayesian Sequential Updating of Mean and Variance  
 

Figure 4.  Bayesian EWMA Normal-Gamma Iteration  
 

 


