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EWMA for Mean and Variance

A Bayesian EWMA for Mean and Variance

ABSTRACT
We obtain smultaneous exponentidly weighted moving averages (EWMAS) for mean
and variance as the Bayesian prior for the next noisy observation of a norma random walk,
where the information (reciprocal variance) of migration and noise have a common factor whose
reciproca follows a gamma-beta random walk. This procedure has applications in finance as
an dternative to the popular ARCH / GARCH modéels, in addition to physical processes such
as wear out and automotive misfire monitoring. The procedure is derived by gpplying Bayesian

sequentia updating (1. Observation, 2. Trangtion).

KEY WORDS: Exponentidly weighted moving average; Bayesian Sequentid Updeting; On-
board diagnogtics (OBDs); autoregressive conditional heteroscedagticity (ARCH); midfire

detection; wear out; fast initid response (FIR).

1. INTRODUCTION
This article describes a method for monitoring a process with changing mean and
vaiance. An example gopears in Figure 1. Somewhat smilar images appear in financid and
economics data and in data from many physical processes. This example presents the angular
accleration after 250 firing events in cylinder 4 in a V-8 engine. The plant (i.e, sysem

monitored) was decelerating during the firgt haf of the period shown here. The latter haf shows
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the effect of requested accderation combined with misfires We see increases in both the
variability from one observation to the next and in the apparent background rate of drift.
(Figure 1 about here)

Data on stock prices sometimes exhibit behavior smilar to Figure 1. Surprisng news
about a company bursts upon investors, leading to a period of increased voldtility in the price
per shae. Smilar behavior is exhibited by many physcd sysems, including manufacturing
processes. A piece of equipment (“plant”) performs in a stable manner until a component
crosses a deterioration threshold that degrades the consistency of performance of the plant,
leading to an increase in both the short- and long-term variability. Figure 1 presents the angular
accderation accompanying 250 firing events for cylinder 4 measured a the front of a crankshaft
of aV-8 engine. For dmost the first haf of the period portrayed here, the plant appears to be
operding in a raively stable node with modest variability. Suddenly, we see a subgtantid
jump followed by a period of devated ingability. During the initid, stable period, the vehicle is
decederaing. Roughly 20% of the way through Figure 1, the engine begins misfiring occasionally
on dl cylinders due to inadequate spark. However, the misfires are not apparent in the figure
until the throttle is opened roughly haf way through Figure 1, whereupon the gap between
complete and incomplete combustion generates the ingtabilities we see.

In this article, we will model these observations with Bayesan exponentidly weighted
moving averages (EWMAS) for mean and variance, discussed in Section 2. These are smple
and degant tools suitable for many applications where better modeling of variability may help
improve undersanding of the behavior of the plant. For misfire detection, this modd might

provide a bridge towards more sophisticated modds that could aid in fault isolation [which
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cylinder(s) are misfiring] as well as mere detection of amisfire problem. The results of gpplying
these tools to the data of Figure 1 appear in Figure 2. The EWMA for mean appears as the
bold line in Figure 2.1, substantidly smoothing the data. Two sets of dashed lines about this
mean give 99.7% confidence bounds for the mean and for the next observation; these are
Student’s t confidence bounds with degrees of freedom reflecting the equivaent number of
observations incorporated in the relevant inverse chi-square distribution of the EWMA for
variance.
(Figure 2 about here)

Similarly, the dark solid line in Figure 2.2 presents the square root of the EWMA for
variance of the predictive digtribution. It starts large because the initid uncertainty about the
mean a fird use implies subgtantia uncertainty about the first observation. Information quickly
accumulates about the location of the mean, which then dlows information to accumul ate about
the variability as well. A pair of dashed lines close to the solid line give 99.7% confidence
bounds for the uncertainty in the estimated predictive sandard deviation, using as before the
relevant inverse chi-square digtribution of the EWMA for variance. A third dashed line gives a
Student’ st 99.7% upper bound for the absolute vaue of the prediction error.

We develop toals for this gpplication usng the two-step Bayesian sequentid updating
process (1. Observation and Bayes theorem; 2. Trangtion and prior for the next observation)
previoudy used to develop a Bayes-adjusted Cusum to detect an abrupt jump from asample
“good” to a ample “bad” hypothesis (Graves, Bisgaard and Kulahci 200238), a Bayesan
EWMA for mean only (Graves, Bisgaard and Kulahci 2002b) and more general Kaman filter

monitors to isolate as well as detect problems (Graves et d. 2001). The previous Bayesan
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EWMA (Graves, Bisgaard and Kulahci 2002b) assumes that the observation error variance is
esimated from studies of gage repeatability and reproducibility, while the migration variance is
esimated from reliability data. In corirast, we here assume that these variances are unknown
and may change over time, dthough thelr ratio is assumed known. If the rate of change in the
vaiance is zero, it provides a naura Bayesan foundation for estimating the system variance
assuming aknown ratio between the migration and observation variances.

This agpplies more genera theory developed by West, Harrison, and Pole (West and
Harrison 1999 and Pole, West and Harrison 1994) with two primary differences. First, they do
not identify their evolving precison with an EWMA for variance; because of the widespread
underganding of variances, standard deviatiions and EWMAS, we think this is a usgful
innovation. Second, they discuss the theory in terms of Student’ st digtributions, largely glossing
over the norma-gamma origins of their Student’s t digtributions. We find this mode of
reasoning difficult to follow, because Student’s t distributions do not have the obvious
convolution and Bayesian conjugate properties of normd distributions.

Therefore, Bayesan sequentid updating is applied here to norma-gamma distributions
in a cycle outlined briefly in Figure 3 and discussed in more detall in Section 2. Student's t
confidence intervas for the means are then developed in Section 3 by integrating out acommon
ganma precison factor. A few sample computations are presented in Section 4, and
concluding remarks appear in Section 5.

(Figure 3 about here)
The computations described below may appear more complicated than they redly are.

Applications requiring only smoothed estimates of mean and variability may need only EWMAS
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of mean and of squared prediction error (as a proportion of the relative predictive variance). |If
no fast initid response capability is needed, weights on the last observation and statistical control
limits can be congtructed with effort comparable to current EWMA procedures. The sample
computations in Section 4 include severd geps that merely involve renaming certain quantities.
For example, the posterior mean at each point in time is numericdly identicd to the prior mean
of the process a the arivd of the next observation and to the forecast mean for that
observation, dthough confidence intervals associated with these three concepts are different.
Maintaining anotationd distinction helps us understand and discuss the different confidence
intervas, it dso facilitates gpplications to more generd, e.g., Kdman filtering, Stuations where
posterior, prior, and forecast means may be different.

Part of the complexity is due to the multitude of distributionsinvolved: At each point in
time, in addition to the basic migration and observation models, we have a predictive distribution
and both prior and podterior digributions. To manage this complexity, we adopt a double

subscript notation, eg., X, , for aprior and xy: for a posterior mean for an unknown stete x;.

[Harvey (1989) used a smilar notationa convention but not as extensively as we do here]

2. BAYESIAN UPDATING WITH A DRIFTING MEAN AND VARIANCE
In this section, we develop the theory for a Bayesian exponentidly weighted moving
average (EWMA) for both mean and variance. The badsic formulae are outlined in Table 1.
This provides a sandard EWMA for both mean and variance with the weight on the last

observation changing with time, converging to an asymptote as information accumulates on the
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date of the process. As with the Bayesan EWMA for mean only, discussed by Graves,
Bisgaard and Kulahci (2002D), this provides a very sensible fast initid response (FIR), adjusting
the weight on the last obsarvation to baance the reative information content of prior and
obsarvetion. The theory follows naturdly from the two-sep Bayesan sequentid updating
procedure outlined in Figure 3.

(Table 1 about here)

Step 1. Observation and Bayes Theorem. As each new observation arrives, the
firdt step is to combine the information it contains about the condition of the plant (i.e, the
process monitored) with the prior from previous experience. Then Step 2 will modify the
resulting posterior to account for atrangition in the plant anticipated before the next observation.

Stepl.0. Model Assumptions. Specificaly, at first use, the condition of the plant (x; |

f 1) isassumed to follow N(Xyjo, sjolf 1), Wheref ; isassumed to follow a gamma digtribution,

G(nyo/2, dyjo/2). For future reference, we recal that f(xl,fl): f(x1|f 1)f(f 1),where

i =2 0]
f(x If)uf”z@'qo"f—la%S 2y @)
1 ﬂb
and
f (f 1)l'l f 1(%_2)/2 EXp{‘ f 1du0/2}' @)
S0
02 ]
f () f 2 e»qo. g—: +dm%- 3
o

(We often omit constants required to make probability densities integrate to one when they are
not needed to understand what we are doing and may obscure our message.)

At each point in time, we observe

EWMA for Mean and Variance.doc 7 06/23/02



EWMA for Mean and Variance

Vi = X + Vi, where v, ~ N(O, s 2 /f ),
o 4

Fyx f)uf e j?f

Just before this observation, the prior for (X, f¢ | D) IS {N(X¢, sflt_llf 1), GNyea/2,

Qllo
'O‘*<-C

dy.,/2)}, where Dia = { Yia, Yeoies Yiu Xajo, sjo, Nyjo, dijo}, the history available a time

t-1:

f(xf Doy)= F(xJf D, )F D).,
where

y2 .‘t_ ft %(t |t191‘l
f(XtIft’Dt-l)uft exp% ZWEE’ ®)

and

f (f t|Dt-1) Hf t(nt|,,1—2)/2 eXp{ - f tdtlt—l/z}’ (6)
0

i 5 2
(i o, Jut Vel %e‘g— L vy, . o
{ Swi g th
Whent =1, (5) - (7) is provided by the initid prior (1) - (3); later, it is provided by the output
of Step 2, trangition, after the previous observation.
As outlined in Figure 3, when a new observation arrives, this prior is converted to a
posterior (Step 1), and the posterior is then modified to modd atrangtion, producing a prior for

the next observation (Step 2). We shdl see that the resulting posterior and the new prior are

both dso normal-gamma, which we write as {N(xt, S 2 If 1), G(nyd/2, d,./2)} and {N(Xe+ayt,

S Ly f 1), GNuap/2, d,y /2)}, respectively.

In particular, the trangtion in location is moddled as
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X1 = Xe + W, W~ N(O, s 2/ ¢). (8)
Meanwhile, the trangtion for f  involves discounting G(ny:/2, d,, /2) to G(n,,, /2, d,.,, /2) for

f t+1,With nt+1|t =d ntlt and dt+l|t =dd for somed withO < d S 1.

>

It seems appropriate a this point to discuss terminology. A sguared reciproca scae
parameter such as f ; is sometimes cdled a precision (e.g., DeGroot 1970, p. 167; Bernardo
and Smith 2000, pp. 121, 139). Benardo and Smith (2000) discuss normal-gamma
digributions like those we consider here but apparently without assgning names to parameters

such as s jo and f ;. Inthisaticle at each point in time, the prior, posterior, observation,

migration, and predictive digributions will dl be norma-gamma. For t fixed, the parameter f .
will be the same in dl of these digributions, though this parameter may change over time. To
remind ourselves of this repeated use of f (, we shdl cdl it a“common precison factor”; by

extenson, we shdl cal itsreciprocd f,* a*“common variance factor”.
With this, we see that s jo isthe variance of x; as a proportion of the common variance

factor f;*; wewill therefore call s jo the “relative variance” of x; for short. We shdl describe

S 1]5 as the “informetion” regarding X, as a proportion of the common precision factor f , , or

the “rddive information” for short. We cdl this “rddive information” rather than “reative
precison” to emphasize the fact that the observed information, being the negative second
derivative of the log(density) with respect to x;, adds with Bayes theorem (Graves 2002). This

additive property of the observed information seems to provide greater ingght for potentidly
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non-norma observations or with non-linear gpplications than the concept of a“precison”, being
asquared reciproca scae factor.

We now describe the use of Bayes theorem in this context. To smplify the
presentation of details, we break this activity into two substeps, preparing and updating.

Step 1.1. Preparing. We further divide “preparing” into three substeps:  (1.18)
Predictive Digtribution, (1.1b) Posterior Information and Variance, and (1.1c) Kaman Gain, as
we now explain.

Sep 1.1a. Predictive Distribution. We want the margind distribution (y: | f ¢+, D,_;).

From (4), we see that y; is the sum of two independent, normally distributed random variables,

0 (Vi | ft, D,,)isdsoanormd digtribution, with mean and variance being the sums of the

means and variances of x; and v;:

(V| &, Dea) ~N(fi s 5y /),
where

t = Xyt )
and

2 _ .2 2
Syr1 =Syt Sy (10)

Vv

[Notethat f, * isacommon factor of the variances of (x. | f ¢, D1) and the observation y; per

(4); itistherefore dso afactor of the predictive variance)]
Sep 1.1b. Posterior Information and Variance. Fisher's efficient score [derivative

of thelog dengty, I(...)] of the posterior is the prior score plus the score from the data:

(% 1D) _ M(x D), Ty I%) _€ % - Xpsl € x -y U

é
A t
=& atée G (11)
X, X, X, &8 sa.ffog & siffii
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(Graves 2002). From this, we see that the posterior scoreis linear in x; with f ; as afactor and
therefore can be written [ f(x - Xy )/s flt] for appropriately chosen xy: ad s ;. The
integra of this gives us the logarithm of the posterior dengity as a parabola up to an additive
congtant. Since the support of x; runs over the entire red line, this proves that the posterior is
Nt S o fF o).

To determine s t|2t , We take another derivative of (11). This gives us “Bayes Rule of
Information” (Graves 2002) that the podterior (observed) information is the sum of the
information from the prior and the data. Apart from the common precision factor f , thisgives
usthefallowing:

Sg =Sy tSy. (12)

Sep 1.1c. Kalman Gain. We now let x; = 0in (11) and solve for xy; asfollows:

X = S 2{s i %es +5 02V} (13)
The weight on the last observation y; in (13) is cdled the Kdman gain and will be denoted as
follows
Ki=sgs.”. (14)
Touse K, in (13), wefirst use (12) to obtain
Si1=Sg Sy
We subdtitute this with (14) into (13) to get

2

— e 2 - -2 -2
Xi|t = Stlt{(s tt S, )tht-l S, Yt}

= Xyt Kt(yt - th-l)' (15
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For plants with constant observation and trangtion variances, dl the computations of
substep 1.1 can be done offline except for the mean of the predictive digtribution, f;. With or
without those offline computations, if these preparations are done prior to the arriva of the latest
observation, v, it can shorten dightly the time required to update our knowledge of the state of
the plant.

Step 1.2. Updating. In “updating”, we (a) compute the prediction error and use that
to compute (b) the posterior mean and (C) the pogterior distribution of the common precision
factor.

Sep 1.2a. Prediction Error. When the observation y; arrives, we compute the
prediction error as,

a=V¥—f. (16)

Sep 1.2b. Posterior Mean. With the prediction error in hand, we multiply it by the

Kaman gain and add the product to the prior mean to obtain the posterior mean per (15), as
Xgr = Xy, + K& (17)
Sep 1.2c. Posterior Precision. We now combine the predictive digtribution (9) -

(10) with the prior for the common precision factor (6) as
o o .
f (yt ’f t |Dt—l) = f(yt|f t? Dt-l)f (f t|Dt—1) M f t( " 1)/2 expi' Et[(e‘/s yl-l)2 + dt[.lllg

M f t(ntlt-Z)/z e(p{ - f tdt|t/2} ’
where
Nge = Nea + 1
and (18)

dtl = (et/s y|t—l)2 + dtk—l'
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But snce f(f ¢ | D) = f(f + | Y&, Dia) = f (Yo, f ¢ | Decs) / F(V, | Dit) 1 f (Wi, f ¢ | Dis), we see that
(f ¢ | DY) ~ G(ny/2, dt/2).

This completes Step 1, observation, in Bayesan sequentid updating as outlined in
Figure 3. Next, we modd the trangtion that we assume will occur before the next observation,
per Step 2.

Step 2. Transition and Prior for the Next Observation. Given (x; | f +, D;) and
(f ¢ | D) from Step 1, we condder the trangtion for the common precison factor f (tof ., and
for the location X; tO X¢+1.

Sep 2.1. Prior Precision. Following Pole, West and Harrison (1994), West and
Harison (1999), and Shephard (1994), we model a potentid change in precison by

discounting the chi-square / gamma degrees of freedom and scale factor by a constant d, with O

<d<l1 s0
(f 41| Dy) ~ GNesaye / 2, Aesaye / 2),
where
Nerage = d Nyg,
and (19
Oyt = d Oyt

Pole, West and Harrison (1994, p. 61) describe this step by saying that, “no forma modd is
specified for scae evolution, the scale prior being directly defined as a discounted verson of the
previous posterior.” West and Harrison (1999, p. 361) report that this particular variance
discounting can be judtified by assuming that

fua=gf,/d, (20)
where (@|D;) ~ Beta[dny:/2, (1 —d)ny/2]; for thisdigtribution, E(g|D;) =d, so E(f (+1|Dx) =

fi.
EWMA for Mean and Variance.doc 13 06/23/02
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It may help to understand d to note that [using (18) and (19)]
ne® Y(1-d) ast® ¥
(West and Harrison, p. 362). However, since we are usudly more interested in the future than
the past, we subdtitute thisinto (19) to get the following:
N ® d/(1-d) ast® ¥ (21)
Thus, sdecting d is equivdent to specifying the degrees of freedom in the steady-state chi-
square didribution for the common precision factor f ;.

Expresson (20) can be modified in a variety of ways to mode, eg., the increase in
volatility of stock prices accompanying an increase in trading volume (eg, Lamoureux and
Ladtrapes 1990) or the effect in Figure 1 of a change in throttle angle. However, with or
without (20) and possible refinements, we mugt il ignore the difference between f ; and f .1 in
modding the trangtion from x; to X.1, which is part of Step 2.2.

Expressions (18) - (19) are equivdent to an EWMA for the common variance factor

f .5, whichwedefineast tim =dyy /nt+jJt . By (19) and (18), thisis

_ddm _t _ t|t1 (/Syltl) - t|t1t|tl (e[/s |t1)

t 2 =
tt _ +1 1

t+ll_d

tt t|t 1

2
t+1t ( l )ttlt L+ t(et/s y|t-1) )
where (22)
| t = ]./(nqt_l + 1) = ]./nt|t.
We will use this to evauate variability in Section 3 not conditioned on the unknown common

precision factor f ..
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Sep 2.2. Prior Mean and Variance. Given the posterior (X; | f ¢, D;) from Step 1,

with the trangition (8), we get (Xi+1 | f t, Dt) ~ N(Xesayt, S fﬂk /f . ), where

Xi+1)t = Xty (23)
and

2

_ 2 2
St =S tSw- (24)

When we return to Step 1 for the next observation, we replace f ; with f ;. If d =1, the
common precison factor is assumed to be constant, so f 1., = f 1, and thisstep isobvious. If d
<1, itisnot clear (at least to the present authors) that our mode assumptions necessarily imply
that (Xe+1 | f 41, D) ~ N(Xes1it, S t2+m/f w41 ). However, even if it is not drictly true, it seemsto
be a reasonable approximation for many sSituations (at least with d closeto 1), as witnessed by
its use in multivariate state space gpplications discussed, eg., by Pole, West and Harrison
(1994) and West and Harrison (1999).

We now subdtitute (24) into (12) and the result into (14) to obtain the following

recursion for K
K= {(r 24K, )" +1} , (25)
where r > = s 2/s 2. [Graves, Bisgaard and Kulahci (2002b, sec. 5) discussed the behavior
of K; over time assuming f ; = 1. However, sincef ; cances, their analysis of K, applies here as
well ]
This completes Step 2. The resulting prior output from one point in time {N(Xc+ayt,

sjm f t+1), ANqi/2, diqy/2)} becomes an input prior for Step 1.1, {N(Xge, st|2t-1/f t),

Gny1/2, dya/2)}, a the next point in time. In this way, observations are processed
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sequentialy as they arrive. If the modd (1) - (8) is correct, then the prior { N(Xc+ayt, S fﬂn If4),

G(Nes11t/2, divayt/2)} summarizes dl the information in Dy = { Vs, Vi1, ..., Y1, X1j0, S1j0} @bout the
date of the plant a time t +1 [ignoring the goproximation involved in replacing f by f .1
following (23) - (24)].

The most important expressons in this section ae summaized in Fgure 4.
Unfortunately, these results cannot be used directly, because most are conditioned upon the
unknown common precison factor f;. We next integrate out f ;, obtaining Student’s t
marginds (Section 3). The results are gpplied to the data of Figure 1 in Section 4 before a
summary discusson in Section 5.

(Figure 4 about here)

3. STUDENT’S t CONFIDENCE INTERVALS
The results of Section 2 cannot be used directly, because they involve the unknown
common precison factor f ;. To gpply the results, we must integrate out f ¢, obtaining Student’s
t marginds from norma-gamma distributions discussed in Section 2.

The normd-gammadengty asin (3) and (7) isasfollows

f(x,f)pf(”'l)/ze(p}-f—;%e( mo +dl%wy.
f 2& s o th

Weintegrate out f to get the following (Bernardo and Smith 2000, sec. 6.2.4):

. ()2 ()2, - -(n+1)/2
€x- mo U é (x-m?u é (x-mfu
f(X)[,lg; ++du |J,él+( 2) 0 ué1+( 2) G
& S g 9] & ds G & ns G )
where
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$=(s2d/n)=s%?andt?=d/n.
We summarize this by observing that x has a Student’ st digtribution with n degrees of freedom
and with center and scale of mand s,
X ~t(m < n).
Applying thisto the prior (7) gives us

(Xt | Dt-1) ~ t(xt|t—11 §2|t.1; nt|t—1)y
with (26)
Sjt-1 = Syjtalyje,

and tflt,l is the common variance factor EWMA (22). This was used in Figure 2.1 to

determine the inner set of dashed lines as a 99.7% confidenceinterval for (x, | D, , ).

Smilarly, for the predictive distribution not conditioned on the unknown precison f ¢,

we get the following from (9) - (10) and (6):
(Yt | D) ~ t( f, ’S§|t-1; nt|t-l)’
with (27)
Sjt-1 = Syje-1tgjt-1.
This was used to compute the outer dashed lines in Figures 2.1 and 2.2. The inner pair of
dashed linesin Figure 2.2 utilize the (0.0015 and 0.9985) quantiles of the gamma digtribution of

(19) to place confidence limitson s .

We now discuss the computation of afew of the numbers plotted in Figure 2.
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4. SAMPLE COMPUTATIONS
The sample computations described in this section are more complex than required for
many gpplications. For example, the forecast for the next observation (f;), the current prior
mean (X-1), ad the previous posterior mean (X:—1ji-1) are conceptudly three different quantities
that are numericdly equa in the present context. The digtinction is visble in the different
confidence intervas associated with the three concepts. In Figure 2, dashed lines represent
confidence intervas based on the forecast and the prior. The confidence intervas associated
with the posterior are dightly narrower than the confidence intervas for the prior and are not
shown because we are more concerned with the future than the past (at least for Figure 2). This
careful diginction in notation has helped us understand the EWMA and generdizations to, for
example, Kamen filtering, wheref;, X, ,, and x,_,, , may dl bedistinct. Thesedidinctionsare
maintained in this section, though they were suppressed in Table 1.
In the present modd, var(y: | x., f+) = s 2/f, per (4) and var(x.| %_,,f+)=s 2/f,
per (8) [ignoring the change from f, , tof ; discussed following (24)]. Since there are no other

condraintson f ;, we can without loss of generdity set s > = 1. With this choice, f ; becomes

the observation precison, so tf,[_l edimates the obsarvation vaiance, and s?2 =

2

var(x, |f,)/var(y, |f,) = r? = the migration variance as a proportion of the observation

variance.

With this choice, Table 2 begins by recording thet the relative observation variance s 2

andinformation s ;* are both 1. Smilarly, Table 2 reports that the relative migration variance
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s 2 is assumed to be 0.01, while the variance discount factor d = 0.98. As discussed by
Graves, Bisgaard and Kulahci (2002b), the migration variance s 2 = r ? isrdated to reliability
and is equivdent to specifying the degree of smoothing. Meanwhile, per (21), d = 0.98
corresponds to an asymptotic degrees of freedom of n,,,, = 49, roughly one fifth of the
observationsin Figures 1 and 2.

(Table 2 about here)

The firg row in the body of the table gives the fira three observations y; plotted in

Figure 1. The initid prior for the meen per (1) is specified in terms of the mean x,, and
standard devidtion s ,,,. A rough estimate obtained smply by looking a Figure 1 is x,, =0
and s , = 25; this latter number meansthat s 3, = 625 and s ,; = 0.0016. Better estimates

could be obtained if the application justified the extra expense. This follows because monitors
are only desgned where previous experience suggests the possbility of problems (Graves,
Bisgaard and Kulahci 2002b). This experience provides an objective externd reference

population, which could be accessed to provide better estimates of parameters such as x,, and
10°
For later observations, Xq.1, S 4.5, and s 2, aretaken from Step 2.2 at the bottom of

Table 2. We carry both relative variance and information parametersin Table 2 because a sum
of independent random varigbles requires addition of variances, while “Bayes Rule of

Information” (Graves 2002) tells us to add the (observed) information.
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Smilarly, theinitial value of the EWMA for variance t 4, was chosen as 3° just by eying
Figure 1. It was assgned 1 degree of freedom (n,,) to indicate that we are assuming this

method of estimation is roughly equivaent to one single good number. As for x,, and s,
better estimates for tjo and n,, could be obtained if the application judtified the effort.

Thus, t, = 9. For t>1, wegett ., and ny, from Step 2.1 at the bottom of Table

2. Next, the sample standard deviation for x:, Sy-1, IS computed per (26) as the square root of
the product of the EWMA for variance and the relative prior variance per (26), producing S;jo =
75. We compute a confidence interval about Xy, using a Student’s t ditribution with nge
degrees of freedom with scae factor si1. At t = 1, we have 1 degree of freedom, which
produces 212.2 as the 0.9985 quantile of the relevant Student’s t distribution. Thistimes o =
751s 15,915; we add and subtract thisfrom X0 = O to get the corresponding confidence limits
in Table 2. This producesthe inner pair of dashed linesin Figure 2.1.

With the prior specified for each step, we now proceed as outlined in Figure 4 to write

down the predictive digtribution, Step 1.1a. The predictive mean f; is copied from the prior

mean X1, and the relative predictive variance s yzH is the sum of the relative prior and

observation variance parameters, which produces 626 for the first observation. The square

root of the product of the EWMA for variance t t2|t- , and the relative predictive variance s f,_ 1

gives us the predictive sample standard deviation s;—1. For t = 1, thisis 75.06, dightly larger

than s;0; after t = 1, the predictive sample standard deviation s is noticesbly larger than s
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1, because the prior quickly becomes more informative than a single observation; for t =1, the
oppositeistrue. The predictive sample sandard deviation isthe solid linein Figure 2.2.

To get a 99.7% tolerance interva for the new observation and for the absolute
prediction error, we repesat the same logic as for the confidence interva for the prior mean. This
gives us the outer st of dashed lines in Figures 2.1 and 2.2. A confidence interval for the
predictive sample standard deviation is obtained by referring it to a chi-square didtribution with

n,., degreesof freedom. This producestheinner pair of dashed linesin Figure 2.2.

We now proceed to Step 1.1b, computing the relative posterior information as the sum
of the relative information from prior and observation. The relaive poderior variance is the
reciprocal of the corresponding relative information. Next, in Step 1.1c we compute the weight
on the last observation, the Kalman gain, which per (14) is the relative posterior variance times
the relative information from the observation. For the first observetion, this is 0.998, reflecting
the fact that the first observetion is subgtantidly more informative than our bardly informative
prior. If the prior had been completely non-informative, the reaive prior information would
have been exactly O, in which case the Kaman gain would have been exactly 1. Fort = 2, the
Kaman gainis 0.502. Even though the posterior from t = 1 is dightly more informative than a

single observation, the migration with variance parameter s 2 = 0.01 makes the prior for t = 2

dightly less informative than a sngle observation. Smilarly, the Kaman gain for the third
observation is dightly grester than 1/3; with r 2= s 2 /s 2 = 0.01, the Kalman gain continues

down to an asymptote at 0.0951, which we get from letting K; = K,_, = K, in(25) (Graves,
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Bisgaard and Kulahci 2002b, sec. 5). This completes the preparations that could potentialy be
performed in red-time applications before the observation actudly arrived.

With the new observation in hand, we first compute the prediction error e per (16),
Step 1.2a Thisis used to update the EWMAS for both mean and for variance. To prepare for
updating the EWMA for variance, we square this and divide by its corresponding relative
variance, obtaining 0.468 for t = 1.

We dso include here the Student's t log(likdihood). This is not needed when
computing only one EWMA in isolation. However, there are many uses for likdihood. For
example, West and Harrison (1999, sec. 11.4.2) recommend the use of Bayes factors for
evauating one model reletive to another; their use of Bayes factorsis essentidly equivdent to a
traditional one-sided cumulative sum of log(likelihood ratio) or to the Bayes-adjusted Cusum of
Graves, Bisgaard and Kulahci (20028). For many applications, an appropriate likeihood rests
on the margind predictive distribution for the next observation, after integrating out the unknown
common precison factor f ..

Step 1.2b, (17), tdls us to multiply the prediction error by the Kaman gain and add to
the prior mean to get the posterior mean. Similarly, in Step 1.2c, we add 1 to the prior degrees
of freedom to get the posterior degrees of freedom, whichis 2 for t = 1. We next compute the
weight on the last standardized squared prediction error as the reciproca of the posterior
degrees of freedom, per (22). This gives us 0.5 for the first observation, which is consstent

with our assumption that the prior has the information content of one observation (N0 = 1). We
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use these numbers to complete the computation of the posterior EWMA for variance, obtaining

tg =4.734fort =1 Thiscompletes Step 1.

It remains to modify the posterior to account for anticipated migration prior to the next

observation. Per (22), t,, =t . However, the degrees of freedom are discounted by the

factor d. For t = 1 with d = 0.98 this discounts the posterior degrees of freedom from 2 to

1.96 for the prior at t = 2. Per (23), thefuture prior mean x,, , fort = 2isequa to the present
posterior mean X1t = Xyt = ( 17.081) fort =1. Similarly, the future relive prior varianceis
the relative pogterior plus migration variances, giving us 1.008 for t = 1. We reciprocate thisto
get the relative prior information. For reference, we aso compute the corresponding sample

standard deviation as the square root of the product of the prior EWMA for variance and the

relative prior information, which is s.qy; = 2.185for t = 1.

5. DISCUSSION

We believe that this discussion of a Bayesan EWMA for mean and variance illustrates
the power of Bayesan sequentiad updating as a generd principle for designing monitors, for
other applications of this principle, see Graves, Bisgaard and Kulahci (20023, b) and Graves et
d. (2001). Other procedures for monitoring mean and variance have previoudy appeared in
the literature, but without such obvious ties to a unifying principle for monitor design. For
example, Gan (1995) compared four schemes proposed for Ssmultaneous monitoring of center
and variability. These incduded a Cusum and EWMASs of powers of observations and
log(standard deviation). It would, of course, be interesting to extend Gan’s study to include the
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scheme consdered here.  Beyond this, we suspect that Bayesan sequentid updating
congdering various non-norma digtributions might produce monitoring schemes reasonably well
approximated by the alternatives Gan considered. Such research could help in two ways. First,
it could help people design monitors based on data andys's suggesting dternative distributions
for observations and trangtions, in the spirit of Box (1980) and Chen and Box (1990). Second,
it would help further the development of a generd theory for monitor design. We shdl leave this
for future research.
We suspect that expression (20)
log(f ., ) = logff ) +10g(g, /d)

provides a fertile foundation for generdizations, modeling the impact on this common precison
factor of exogenous variables, in the spirit of generdized autoregressve conditiond
heteroscedadticity (GARCH).  With or without these generdizations, we fed that further
research is needed to understand the extent of the gpproximation involved in the gpparently ad

hoc trandtion from (Xw1 | fo, Di) ~ N(Xeeas sfﬂlt /ft) to K1 | o, D) ~ N(Xeqpe,
S fﬂn /f w1 ). This approximation has worked well for West and Harrison (1999) and Pole,

West and Harrison (1994). However, it is not clear (at least to the present authors) how well
thiswill work with rapid changes in the common precison factor f ;.

It is relatively Sraightforward to generdize this work to multivariate state spaces and
observations with possibly non-normal observations and nonlinear observation and trangition
relationships, provided (a) normd distributions provide adequate approximations for both prior

and posterior and () first order Taylor gpproximations can be used in the standard ways. In
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these dtuations, the common precison factors, f, will gill be scdars (see, eg., West and
Harrison 1999, sec. 4.6), aswill be the accompanying EWMA for variance. 1t may be possible
to use amultivariate normd - Wishart digtribution in a smilar way (Bernardo and Smith 2000,

sec. 3.2.5), but this could raise other questions of parsmonious modeling.
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Figurel. A Time Serieswith Changing Mean and Variability
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Figure 2. Example Smoothing of Mean and Standard Deviation

Figure2.1. Data and Drifting Mean
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Figure 3. Bayesan Sequential Updating of Mean and Variance

Step 0. Distribution at First Use
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Step 2. Transiti on and Prior for the Next Observation
t+1| D G(nt+ut/2 dt+]4t/2)
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Figure4. Bayesan EWMA Normal-Gamma lteration
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Step 1.2. Update
1.2a. Prediction error g=Yy,—f
1.2b. Posterior mean Xge = Xge1 T Ki§
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Table1l. Algorithm for Bayesan EWMA for Mean and Variance

Assume
Obsarvation Y =% +V, v ~N(0,s?f ) @)
Migration Xu1 =% +W, W, ~N(Os2/) (8)
EWMA X;:-1 for mean x;

Xy = (1- Kt)xu[_l +K Y, =X, +Kig (17) & (23)
Prediction error & =Y Xa (16)
Kaman gain Ko={1+9/(r2+K )} r2=s2/s? (25)
EWMA t jt_l for the common variance factor f *

t2, =01 02,41 (e /s oo (22)
Weight on the last predictionerror |, =1/(ny,, +1)
c?/ Student’ st degrees of freedom Ny =d (ntlt_1 +1), O<d<1 (19 & (18)
Relative predictive error variance s, , =S5, +S . (10)
Relative prior variance Sy = (s 1ts ;2)'1 +s? (24) & (12)
Confidenceinterval for x; via Student’st
(Xt | Dt-l) ~t(Xt|t-l’ §|2t-1; ntl-l)
Sample variance for the mean St1 =St (26)
Prediction error via Student’st
(e( | Dt—l) ~ t(Q 551-1; ntlt—l)

Sample variance for predictionerror s, =S 5 £, (27)
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Table 2. Illustrative Calculationsfor Bayesian Sequential Updating

Observation variability:
(4 relative vaiance s 2 = 1; rdaiveinformation s ;* =
Transtion:

1

(8) relative migration variance s 2 = 0.01; (19) variance discount factor d = 0.98

time 1 2 3
1. Observation and Bayes Theorem
Observation: Measured angular acceleration v, = -17.108 -19.095 -14.985
1.0. Prior (1)- (3),(5) - (7)

mean Xijt1 = 0.000 -17.081 -18.092
relaive information S t_|t2-1 = 0.0016 0.992 1.953
variance S ’[2|t—l = 625.000 1.008 0.512
EWMA for variance t jt_l = 9.000 4734 3.817
degrees of freedom Mij-1 = 1.000 1.960 2.901
sample standard deviation (26) S = 75.000 2.185 1.398

99.7% confidence interval
Student’st (a =0.0015) 212.205 19.080 9.316
forthe| upperlimit 15915.35 24.606 -5.067
mean| lower limit -15915.35 -58.767  -31.117

1.1. Prepare
1.1a Predictive digtribution

mean (9) fi= 0.000 -17.081 -18.092
relative variance (10) S yzH = 626.000 2.008 1512
sample standard deviation (27) 5.1 = 75.060 3.083 2.402

99.7% confidence interval
Student’st (a =0.0015) 212.205 19.080 9.316
for the upper limit 15928.10 41.750 4.290
observation lower limit -15928.10 -75.912  -40.474
for (absolute prediction error |e) =  15928.10 58.831  22.382

for sample standard deviation S
Sos = € 2000150, )/, | = 3537 10% 133 107 154" 10°
359985 =C 2(0-9985; ntlt-l)/ Ny, = 10.079 6.582 6.487
upper limit s, /Sy 3092611 84550  61.279
lower limit s, /Soeoss  23.643 1202 0943
EVWMA for Mean and Variance.doc 33 06/23/02



EWMA for Mean and Variance

1.1b. Pogerior variahility (12)

2

reldive information Sy = 10016 1.992

variance sg= 0998 0.502

1.1c. Kaman gain (14) K= 0.998 0.502

1.2. Update

1.2a. Prediction error (16) g = -17.108 -2.014

standarcize suared prediction error (€2/s 2 ,) = 0.468 2.020

log(likelihood) -5.514 -2.460

1.2b. Posterior mean (17) Xyt = -17.081 -18.092

1.2c. Posterior common precision factor

degrees of freedom (18) ng=  2.000 2.960

weight on squared prediction error (22) | = 0.500 0.338
deviation of standardized squared prediction error from prior relaive

variance [(ef/s yzk_l)- t t|2t—1] =  -8532 -2.713

EWMA for variance (22) ty = 4734 3.817

2. Transition and prior for the next observation
2.1. Prior precison

EWMA for variance (22) o= 4.734 3.817

degrees of freedom (19) Moyt = 1.960 2.901
2.2. For process average

mean (23) Xpqe = -17.081  -18.092

relative variance (24) Sty = 1008 0.512

information Sk = 0992 1.953

sample standard deviation Syt = 2.185 1.398
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Figure Captions

Figure 1. A Time Serieswith Changing Mean and Variability

Figure 2. Example Smoothing of Mean and Standard Deviation

Figure 3. Bayesan Sequentid Updating of Mean and Variance

Figure4. Bayesan EWMA Norma-Gammallteration
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