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Designing Bayesian EWMA Monitors  

Using Gage R & R and Reliability Data  

 

ABSTRACT 

We derive an exponentially weighted moving average (EWMA) as the Bayesian prior 

mean for a random walk observed with normal error.  This derivation shows how the weight on 

the last observation varies over time.  This weight depends on the migration rate of the random 

walk and the noise variance, which can be estimated from reliability data and studies of gage 

repeatability and reproducibility, respectively.  The variations in the weight on the last 

observation provide a solution to the “fast initial response” problem that we believe is intuitively 

more satisfying than the current standard solution.   

 

KEY WORDS:  Exponentially weighted moving average;  Fast initial response (FIR);  Bayesian 

Sequential Updating;  Gage repeatability and reproducibility;  Hazard rate;  On-board 

diagnostics (OBDs).   

 

1.  INTRODUCTION  

Our productivity, comfort and health in modern society require the proper functioning of 

increasing complex systems subject to a growing variety of malfunctions.  The increasing 

computerization of such systems (which we call “plants” for consistency with the control theory 

literature) provides opportunities for increasingly sophisticated monitors designed to detect and 
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isolate faults, thereby limiting potential damage and facilitating repairs.  Current law requires that 

all new automobiles sold in the US, Canada and Europe have “on-board diagnostics” (OBDs) 

to detect and isolate situations that might compromise emission controls.  These concepts could 

also be applied in manufacturing, public health, clinical trials, and monitoring financial figures.  In 

this article, we apply the principle of Bayesian sequential updating (Figure 1) to a random walk 

observed with error, obtaining thereby a Bayesian exponentially weighted moving average 

(EWMA) with parameters determined from reliability / hazard rate data and gage repeatability 

and reproducibility studies.  For an application of Bayesian sequential updating to detect an 

abrupt jump, see Graves, Bisgaard and Kulahci (2002);  for more general applications, see 

Graves et al. (2001).   

(Figure 1 about here) 

Consider a physical system with a condition x t that is not directly observable but that is 

assumed to follow a random walk, as  

 x t+1 = µt + x t + wt,   wt ~ N(0, 2
,twσ ), (1)  

where µt represents a potential deterministic drift, and wt represents an unpredictable portion of 

system reliability.  In Section 2, we show how µt and tw,σ  relate to the reliability hazard rate.  In 

particular, we show that any reliability distribution can be modeled in terms of tw,σ  or (µt, 

tw,σ ).   

The analyses of this report assume we can model adequately the distribution of x t at first 

use, t = 1.  No monitor is designed for a completely unprecedented application:  The time and 

money to design and use a monitor is justified from experience with other applications, which 
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can be used to estimate a distribution at first use.  For a manufactured product, this could be 

obtained from control chart data collected at the end of the production line.  If this is a new 

product, the distribution at first use could be estimated from the history of similar products, 

adjusted if appropriate considering design objectives, prototype test data, and previous new 

product introductions.  In biostatistics, it could be obtained from previous clinical trials of 

roughly comparable therapies.  In portfolio management, one could consider the behavior of 

similar financial instruments.  In this article, we shall assume that x1 ~ N(x1|0, 
2
0|1σ ).   

In Section 3, we consider a process of the form (1) (with µt = 0 and tw,σ  = wσ  

constant) observed with error,  

 yt = x t + v t,   v t ~ N(0, 2
vσ ). (2)  

In many situations, σv can be estimated from a study of gage repeatability and reproducibility 

(NIST 2001, ch. 2).   

With adequate estimates of the distribution at first use, the hazard rate and σv, we can 

estimate the relative frequency distribution of the condition of plants at any future point in time, 

among all plants with comparable observed histories.  Subjective probabilities can be used, but 

objective probabilities are also available, within the limits of estimation precision and the 

comparability of the initial reference set.   

The conceptual framework is outlined in Figure 1, with mathematical details summarized 

in Table 1.  The result is an exponentially weighted moving average (EWMA), except that the 

weight on the last observation varies with time.  When the migration variance is a constant 

fraction (or multiple) of the observation noise variance, this weight converges to a constant;  
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except in Section 2, we assume that in (1), µt = 0 and 2
,twσ  = 2

wσ , a constant.  Expression 

numbers in Table 1 are keyed to the discussion below.   

(Table 1 about here) 

This procedure provides a fast initial response (FIR) approach that is different from the 

FIR technique in the literature and is clearly tied to information obtainable for virtually any 

monitoring application:  the distribution of the condition of the plant at first use, x1, the reliability, 

coded in wσ , and the measurement noise vσ .  If the condition at first use is non-informative, 

this theory sets K1 = 1 and has Kt declining monotonically to an asymptote as information about 

x t accumulates.  We believe this has much greater intuitive appeal than the traditional FIR 

approach, which essentially asserts that the prior at t = 1 is as informative as the prior at any t > 

1.   

This FIR approach is discussed in Section 6 after considering an example in Section 4 

and discussing further the asymptotic behavior of the algorithm in Section 5.  Questions of 

robustness are considered in Section 7.  Section 8 considers when to declare a malfunction, and 

a summary discussion of this “normal random walk observed with error” appears in Section 9.  

The Bayesian EWMA is in fact the simplest Kalman filter, although a Bayesian development 

differs from the minimum mean square prediction error principle used by Kalman (1960).   

 

2.  HAZARD AND MIGRATION RATES 

We show here how the migration parameters (µt, tw,σ ) in (1) determine the reliability 

distribution, expressed in the hazard rate ht, and conversely how the hazard rate constrains µt 



Bayesian EWMA 

   06/23/02 6

and determines tw,σ  given µt.  Of course, complex systems, whether products, production 

processes or humans, can be impacted by many different kinds of problems.  We assume that ht 

is the hazard rate relevant to a process x t observed indirectly via yt.  Standard techniques in 

biostatistics and reliability support cause-specific estimation of hazard rates.   

To understand the relationship between (µt , tw,σ ) and ht , we start by assuming that x t 

is good as long as L < x t < U.  If the distribution at first use is x1 ~ N(x1|0, 
2
0|1σ ), then h1 = h1,0 

+ h1,1, where  
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For a manufactured product, h1 is the proportion of units with x1 outside (L, U) or that fail for 

this reason when the customer first attempts to use them.   

Let Ft(x t) = Ft(x t | L < xτ < U, for all τ < t) be the cumulative distribution function 

(cdf) for x t given that it is not bad and has not previously been bad.  Then  
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Starting from (3) and (4), we derive the hazard rate ht and the cdf for x t good Ft(x t) recursive in 

pieces as follows.  First, let Ft,0(x t) be the cdf for x t  good or bad at time t given that it has not 

previously been bad as  

 ( ) ( )∫ −−
−

−−

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




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 −−
Φ= 11

1,
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0, tt
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tt xdF

xx
xF

σ
µ

,   (5)  

t = 2, 3, ... .  Then the proportions of units too small and too large at time t among those good 

at t – 1 are  

 ( )LFh tt 0,0, = ,    

and  
 ( )UFh tt 0,1, 1 −= .    

The hazard rate at time t is the sum of those failing both small and large, as  

 ht = ht,0 + ht ,1.  (6)  

The distribution of those still good is the truncated distribution from Ft,0, as  

 ( ) ( )
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From (3) - (7), we see that the sequence (µt , tw,σ ) uniquely determines the hazard rate.   

Conversely, if L < x1|0 < U and µt  = 0 for all t, then ht is monotonically increasing in 

σw,t–1 and is 0 when σw,t–1 = 0.  Thus, in this case, ht uniquely determines σw,t.  [Expressions (1) 

and (3) - (7) can be generalized to a multivariate state space by assuming that xt is bad if it is 

outside an acceptance region A and defining Ft in the obvious way for all Borel sets.  In this 

more general setting, the parameters of the transition distributions uniquely determine the hazard 
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rate.  With suitable additional restrictions, the hazard rate can uniquely determine some 

univariate aspect of the migration distribution.]  

Therefore, given data on product reliability or time to onset of an adverse reaction in 

clinical trials, a reasonably parsimonious model can be built for (µt , tw,σ ) consistent with 

available data.  This does not require data on a new product or therapy never used before;  it 

only requires data on previously tested products or therapies believed to be comparable.   

3.  UNIVARIATE BAYESIAN UPDATING AND AN EWMA 

Now suppose we have yt being a noisy observation of the unknowable state of the plant 

x t, per (2).  We shall apply Bayesian sequential updating to this example with the added 

simplifications of assuming µt = 0 and σw,t = σw = constant.  We shall find that this gives us an 

exponentially weighted moving average (EWMA) in the limit for large t with an intuitively 

satisfying Bayesian answer to the fast initial response (FIR) problem.  This approach will be 

compared to the traditional FIR in Section 6 below, after discussing sample computations in 

Section 4.   

As outlined in Figure 1, Bayesian sequential updating is a two-step process:  “1.  

Observation” and “2.  Transition”.  We find it convenient here to divide step 1 into substeps 

“1.1.  Preparing” and “1.2.  Updating”.  This distinction highlights the fact that “1.1.  Preparing” 

can take place between the previous execution of step 2 and the current “1.2.  Updating” step.  

With stationary systems most of “1.1.  Preparing” can be computed offline in advance of the 

application.  With traditional Kalman filtering (and traditional EWMAs), the Kalman gain is 

often replaced by an asymptotic value, and its transients are ignored.  This can help reduce 
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demands on a real-time microprocessor, allowing in some cases the use of a cheaper 

microprocessor.   

We will preface this development with a brief comment about notation:  As indicated 

with (1) and (2), observations yt provide information about an unknown state of nature x t.  Just 

before each observation arrives, our knowledge of x t is summarized in the prior (x t | Dt–1) ~ 

N(x t| t–1, 
2

1| −ttσ ), where Dt–1 = {yt–1, yt–2, ... y1, x1|0, 
2
0|1σ };  at time t = 1, this is the distribution at 

first use.  Step 1 in Figure 1 transforms this prior into the posterior (x t | Dt), which we show is 

normal, N(x t| t , 
2
|ttσ ), say.  Step 2 then models a transition from x t to x t+1, and our knowledge 

then degrades accordingly to (x t+1 | Dt) ~ N(x t+1| t , 
2

|1 tt +σ ), which becomes the prior at the next 

point in time.  We now consider specifics of these steps.   

Step 1.1.  Preparing.  We divide step 1.1 further into three substeps:  (1.1a) 

Predictive Distribution, (1.1b) Posterior Variance, and (1.1c) Kalman Gain, as we now explain.  

Step 1.1a.  Predictive Distribution.  We begin by combining (x t | Dt–1) ~ N(x t| t–1, 

2
1| −ttσ ) with the observation process (2) and integrating out the unknowable x t to get the 

predictive distribution as follows:   

 ( yt | Dt–1) ~ N( ft, 
2

1| −tyσ ),  

where  
 ft = x t| t–1,  (8)  

since the expected value of the sum in (2) is the sum of the expectations, and  

 2
1| −tyσ  = 2

1| −ttσ  + 2
vσ , (9) 

since the variance of a sum of uncorrelated random variables is the sum of the variances.  We 

maintain the distinction between ft and x t| t–1 because they serve different functions, as witnessed 
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by the fact that their associated confidence intervals are different, even though the quantities 

themselves are in this application numerically identical.  This notational distinction makes it easier 

for us to understand the EWMA and explain its different properties.  It also makes it easier for 

us to generalize this procedure to situations where ft and x t| t–1 may be different.   

Step 1.1b.  Posterior Variance.  Fisher’s efficient score [derivative of the log density, 

( )...l ] of the posterior is the prior score plus the score from the data:   
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Graves (2002) calls this “Keeping score with Bayes’ theorem.”  From this, we see that the 

posterior score is linear in x t and can therefore be written ( )[ ]2
|| ttttt xx σ−−  for appropriately 

chosen x t| t  and 2
|ttσ .  The integral of this gives us the logarithm of the posterior density as a 

parabola up to an additive constant.  Since the support of x t runs over the entire real line, this 

proves that the posterior is N(x t| t , 
2
|ttσ ).   

To determine 2
|ttσ , we take another derivative of (10).  This gives us “Bayes’ Rule of 

Information” (Graves 2002) that the posterior (observed) information is the sum of the 

information from the prior and the data, which in this case is  

 22
1|

2
|

−−
−

− += vtttt σσσ . (11)  

As noted by Graves (2002), this holds for the observed information [negative second derivative 

of log(density)] quite generally, even with non-regular likelihood where it does not hold for the 

Fisher (expected) information.  DeGroot (1970) calls a reciprocal squared scale factor a 

“precision”.  However, reciprocal squared scale factors do not necessarily add with Bayes’ 
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theorem except with normal distributions.   Therefore, to emphasize the generality of (11), we 

shall use the term “information” for the normal reciprocal variance in this article.   

Step 1.1c.  Kalman Gain.  We now let x t = 0 in (10) and solve for x t| t  as follows:   

 x t| t = { }tvtttttt yx 2
1|

2
1|

2
|

−
−

−
− + σσσ ,  (12)  

The weight on the last observation yt in (12) is called the Kalman gain and will be denoted as 

follows:   

 Kt = 22
|

−
vtt σσ .  (13)  

We solve (11) for 2
1|

−
−ttσ  and substitute the result with (13) into (12) to get  

 x t| t = ( ){ }tvttvtttt yx 2
1|

22
|

2
|

−
−

−− +− σσσσ   

 = ( )1|1| −− −+ tttttt xyKx .  (14)  

For plants with stationary transitions and constant observation and transition variances 

(which we assume here), all the computations of substep 1.1 can be done offline except for the 

mean of the predictive distribution.  With or without those offline computations, if these 

“preparations” are done prior to the arrival of the latest observation yt it can shorten slightly the 

time required to update our knowledge of the state of the plant.   

Step 1.2.  Updating.  In “updating”, we compute the prediction error and use that to 

update the “posterior mean”, our point estimate of the state of the plant.   

Step 1.2a.  Prediction Error.  When the observation yt arrives, we compute the 

prediction error as,  

 et = yt – ft.  (15)  
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Step 1.2b.  Posterior Mean.  With the prediction error in hand, we multiply it by the 

Kalman gain and add the product to the prior mean to obtain the posterior mean per (14), as  

 x t| t = tttt eKx +−1| .  (16)  

This completes step 1, observation, in Bayesian sequential updating as outlined in Figure 

1.  Next, we permit the plant to transition in preparation for the next observation, per step 2.   

Step 2.  Transition and Prior for the Next Observation.  Given the posterior mean 

and variance from step 1, we can easily compute using (1) the prior mean and variance for the 

next observations, as follows:   

Step 2.1.  Prior Mean.   
 x t+1| t = x t| t,  (17)  
and  

Step 2.2.  Prior Variance.   
 2

|1tt +σ  = 2
|ttσ  + 2

wσ . (18)  

This completes step 2.  The resulting prior distribution at one point in time N(x t+1| t, 

2
|1tt +σ ) becomes an input for step 1.1, N(x t| t–1, 

2
1| −ttσ ), at the next point in time.  In this way, 

observations are processed sequentially as they arrive.  If the model (1) - (2) is correct, then the 

prior N(x t+1| t, 
2

|1tt +σ ) summarizes all the information in Dt = {yt, yt–1, ..., y1, x1|0, σ1|0} about the 

state of the plant just prior to observation yt+1.   

The most important expressions in this section are summarized in Figure 2.  We next 

apply this iteration to an example (Section 4) before deriving some general properties of this 

case.  These properties include the convergence of the Kalman gain to an asymptote (Section 

5).  This convergence turns out to be monotonic, which helps to establish it as a natural 

Bayesian answer to the fast initial response (FIR) problem.  This is followed by discussions of 
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robustness (Section 7), threshold selection (Section 8), and concluding remarks on EWMAs 

(Section 9).   

(Figure 2 about here) 

 

4.  SAMPLE COMPUTATIONS FOR A BAYESIAN EWMA 

Sample computations using this procedure are given in Table 2 and Figure 3.  As 

suggested in the summary box at the bottom of Figure 2, we really only need three columns 

from Table 2.2:  the prior mean and variance and the Kalman gain.  The remaining columns of 

Table 2.2 are provided to describe more clearly the machinery of Bayesian updating as 

discussed with Figures 2 and 1.   

(Table 2 about here)  

(Figure 3 about here)  

Numbers for simulated “true state” and “observation” are given in the second and third 

columns of Table 2.2.  These were obtained as pseudo-random numbers generated according 

to the “manufacturing distribution”, “observation error”, and “migration” described in Table 2.1.  

The manufacturing distribution is assumed to be normal with mean, variance, and information as 

given in Table 2.1;  these define the prior at time t = 1.  We begin computing the “posterior 

information” for observation 1 using expression (11), as 2
1|1
−σ  = 2

0|1
−σ  + 2−

vσ  = 10 + 100 = 110.  

The posterior variance 2
1|1σ  = 1/110 = 0.00909.  The Kalman gain is obtained from (13) as Kt 

= 2
1|1σ 2−

vσ  = 0.00909 × 100 = 0.909.  The prediction error (–0.063) is obtained as usual as 

the observation (–0.063) minus the forecast 0, per (15) and (8).  The posterior mean, per (16), 
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is then the prior mean plus Kt et = 0 + (0.909) × (–0.063) = (–0.057);  this appears in Table 

2.2 as the prior for time t = 2, per (17).   

Note that the prior and posterior variances and information terms, 2
1| −ttσ , 2

|ttσ , 2
1|

−
−ttσ , 

and 2
|
−
ttσ , and the Kalman gain, Kt, all converge to constants to three significant digits by 

observation t = 20.  This occurs here because σv and σw are constant.  This is a special case of 

a more general result that for “completely observable” models (Gelb 1999, p. 142;  Kalman 

and Bucy 1961) with constant, linear transitions and constant observation and transition 

covariance matrices, the Kalman gain and the prior and posterior covariance matrices all 

converge to constants.  We next consider more carefully the behavior of Kt in this EWMA case.   

 

5.  KALMAN GAIN FOR A BAYESIAN EWMA 

In this section, we study the behavior over time of the Kalman gain of (13) and tie more 

carefully the above model to a traditional EWMA.  First, we combine (14) with (17) to obtain 

the following:   

 x t+1| t = x t| t–1 + Kt(yt – x t| t–1)   

            = ( ) ttttt yKxK +− −1|1 .   (19)  

This shows more clearly than (12) that the posterior mean x t+1| t is a weighted average of x t| t–1 

and yt.  By recursively substituting (19) into itself, we can show that x t+1| t is a weighted average 

of yt–j, j = 0, 1, ..., with weights declining exponentially, provided 0 < Kt < 1 and Kt is bounded 

away from 0 as t → ∞.  [Box and Luceño (1997, p. 69, 91) show how (19) implies that x t+1| t is 
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a weighted average of yt–j, j = 0, 1, ..., with weights declining exponentially assuming Kt = K∞ is 

constant.]   

To confirm that 0 < Kt < 1, substitute (11) into (13) to obtain the following:   

 Kt = 22
|

−
vtt σσ  = ( ) 2122

1|
−−−−

− + vvtt σσσ  = ( ) 12
1|

21
−−

−+ ttv σσ .   (20)  

But 2
vσ  and 2

1| −ttσ  are both variances and strictly positive, from which we conclude that 0 < Kt 

< 1.  We shall develop a recursion for Kt , which becomes Kt = 1/t when K1 = 1 and the 

migration rate σw = 0.  This will establish that x t+1| t in (19) is in this case a simple average 

updated one observation at a time.  For a rigorous proof of the asymptotic behavior of Kt, we 

will refer the reader to the more general result of Kalman and Bucy (1961, theorem 5), though 

we will derive expressions for that asymptote and discuss its nature.   

To derive a recursion for Kt, we first substitute (18) into (11) to obtain the following:   

 2
|
−
ttσ  = ( ) 122

1|1

−

−− + wtt σσ  + 2−
vσ     

                      = ( ){ }1
122

1|1
22 ++

−
−−

−
vttv σσρσ ,   

where ρ = vw σσ .  We multiply both sides of this equation by 2
vσ  and recall the definition of 

Kt, (13), to get the following:   

 ( ){ }1
1

1
21 ++=

−
−

−
tt KK ρ .   (21)  

In Figure 4, we present the behavior of Kt over time for different levels of ρ assuming 

2
0|1σ  = ∞.  A similar analysis would establish that 2

|1 tt +σ  and 2
|ttσ  also approach asymptotes, 

which we denote by 2
|1 ∞+∞σ  and 2

|∞∞σ  with an obvious abuse of notation.  These latter two 

asymptotes must satisfy (11) and (18), which means that 2
|1 ∞+∞σ  > 2

|∞∞σ .   
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(Figure 4 about here)  

This figure suggests that Kt goes to an asymptote, K∞, say, that depends on ρ.  

Moreover, for ρ > 0.3, this asymptote is essentially achieved by observation 10.  For ρ > 3, the 

asymptote is essentially achieved by t = 2.  For ρ < 0.1, the asymptote is not achieved 10 

observations.  We shall see below that for ρ = 0, this asymptote is 0;  otherwise, this suggests 

that Kt is bounded away from 0, which with (19) establishes that x t+1| t is a moving average of all 

previous observations with weights declining exponentially with age.  For a rigorous proof of 

this, see the more general work of Kalman and Bucy (1961).  For a similar discussion of the 

EWMA, see Kirkendall (1989) and Harvey (1989, pp. 119, 124). 

To obtain a formula for this asymptote, we substitute K∞ for both Kt and Kt–1 in (21) 

and solve for K∞.  We get the following:   

 

{ }
( ){ }

( ){ }.241

141
2

4
2
1

2

2
2

224

ρρρ

ρ
ρ

ρρρ

−+=

−+=

−+=∞K

   (22)  

To study the asymptotic behavior of K∞ as ρ gets large or small, we use the binomial theorem as 

x+1  = 1 + (x/2) – (x2/8) + O(x3) in these last two expressions to get the following:   

 
( )

( ) ( ) ( ) ( ){ }.128821

1
642

42

ρρρρρ

ρρ

O

OK

+−+−=

+−= −−
∞    (23) 

The asymptote (22) is plotted vs. ρ in Figure 5. The most obvious conclusion from (22) 

and Figures 4 and 5 is that the choice of weight on the last observation is equivalent to 

specifying ρ = the square root of the migration variance, 2
wσ , as a proportion of the 
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measurement noise, 2
vσ .  This relationship quantifies what we would qualitatively expect:  With 

processes that change slowly relatively to the measurement noise, history is more informative 

that the last observation.  On the other hand, rapidly changing processes with relatively 

informative observations find recent history more relevant than the past for predicting the future.  

The asymptotic expansions in (23) quantify the behavior we see in Figure 5 for large and small 

ρ.   

(Figure 5 about here)  

For future reference, we multiply ∞K  in (22) by 2
vσ  to obtain the asymptotic posterior 

variance 2
|∞∞σ  per (13) as follows:   

 ( ){ }141
2
1 222

| −+=∞∞ ρσσ w .    

Similarly, we use (18) to get the asymptotic prior variance 2
|1 ∞+∞σ  as follows:   

 ( ){ }141
2
1 222

|1 ++=∞+∞ ρσσ w .   (24) 

If the initial prior variance 2
0|1σ  exactly equals the asymptotic prior variance 2

|1 ∞+∞σ , the 

weight on the last observation Kt will be constant, giving us a traditional EWMA.  If, as is 

usually the case, 2
0|1σ  > 2

|1 ∞+∞σ , the Kalman gain will start larger than K∞ and decline 

monotonically towards it.  If 2
0|1σ  < 2

|1 ∞+∞σ , the Kalman gain will start smaller than K∞  and 

increase monotonically towards it, reflecting the fact that we now lose more information from 

migration than we gain from each observation.    
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6.  BAYESIAN AND TRADITIONAL APPROACHES TO FIR FOR EWMA 

Lucas and Saccucci (1990) observed that in many applications of a traditional EWMA 

[with a constant weight on the last observations Kt = K∞ in (19)], the resulting EWMA may 

require too many observations to cross a threshold if the plant is bad, starting with x1|0 = µ0.  

Their solution is to start with 25, 50 or 75 percent “head start”, i.e., with x1|0 = µ0 + p(µ1 – µ0), 

where p = 0.25, 0.5, or 0.75.   

Bayesian sequential updating, as outlined in Figures 1 and 2, seems to provide a more 

comprehensive and understandable approach to this important problem:  In terms of the theory 

developed in Sections 3 - 5 above, Lucas and Saccucci essentially assume that σ1|0 = σ∞+1|∞ 

[see (24)], but that 0|1x  is misspecified and is better given as 0|1x  = µ0 + p(µ1 – µ0), where p = 

0.25, 0.5, or 0.75.  A constant weight on the last observation Kt implies that the starting value 

for the EWMA 0|1x  tells us as much about the condition of the plant as 100|101x , the value of the 

EWMA after 100 observations.  While this would very rarely be true, there might be many 

situations where the benefits from using a varying Kt might not justify the work of estimating 

migration and noise variances and computing Kt with each observation.  

The data required to determine a changing Kt is virtually always available.  A monitor is 

almost never designed for a situation (plant), that is totally unique.  Someone suspects that a 

fault of a certain type may occur.  This suspicion is based on somebody’s experience with other 

applications that bear some resemblance to the problem at hand.  This experience provides 

access to an external reference distribution and data on the reliability of the plant from which 

estimates for the initial prior (x1|0, 
2
0|1σ ) and migration variance 2

wσ  can be derived.  We 
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combine this with a gage repeatability and reproducibility study (e.g., NIST 2001, ch. 2) to 

estimate the noise variance 2
vσ .  In this way, Bayesian sequential updating shows a person 

designing a monitor precisely how to use this relevant information;  the previously existing theory 

seems silent about the relevance of this information and how to use it.   

For the FIR problem, this recommends adjusting 2
0|1σ , not x1|0, in the initial prior.  The 

disadvantage is that the weight on the last observation is not constant but must be updated with 

each observation per (21) until convergence to K∞ is essentially achieved.   

Steiner (1999) suggested varying the control limits, using the variance of an EWMA 

assuming the first observation is known exactly.  This produces initial detection limits that are 

tighter than the asymptotic limits.  In our judgment, this is exactly the opposite of what is needed 

in most FIR applications, where a fast initial response is needed precisely because of initial 

uncertainty regarding the state of the plant.  We suspect that detection limits should perhaps also 

vary with time, as Steiner suggests.  However, the “best” limits should be driven by an 

appropriate cost structure.  As noted in Section 8 below, this is beyond the scope of the present 

article.   

Finally, we believe that Bayesian sequential updating, as exemplified by the current 

work, provides a comprehensive theoretic foundation for work on the short run process control 

problem, recently discussed, e.g., by Nembhard and Mastrangelo (1998).   
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7.  ROBUSTNESS 

Box has noted that robustness is often more important than optimality, since a 

theoretically optimal solution may be so non-robust that it performs miserably under common 

discrepancies between reality and standard assumptions.  Box and Luceño (1997, pp. 117-

127) find that the EWMA provides a quite robust procedure for tracking a drifting process, 

even if the migration mechanism differs substantially from the random walk of (1).  This is 

consistent with other work, e.g, Srivistava and Wu (1993) and Roberts (1966), that finds that 

the EWMA performs reasonably well under a broad variety of circumstances, though not as 

well as a cumulative sum in reacting to certain abrupt jumps.   

However, a procedure may be robust to one kind of model inadequacy but quite 

sensitive, nonrobust, to another.  For example, an EWMA may follow a process average 

reasonably well even if the transitions differ substantially from the random walk of (1) and the 

weight on the last observation differs from the optimal.  However, we would expect that 

confidence intervals using the predictive or the prior variance, (9) or (18), might not perform 

very well if either the measurement or the migration variance, 2
vσ  or 2

wσ , were poorly 

estimated.  Traditional methods for estimating these parameters and evaluating the applicability 

of this model are discussed by Box and Luceño (1997, pp. 117-127).   

There is at present another practical disadvantage to the use of our Bayesian EWMA, 

(19) with (21):  We do not currently have a simple method for estimating the run length 

characteristics for the Bayesian EWMA, other than suggesting that it probably does not differ 
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substantially from the traditional FIR technique proposed by Lucas and Saccucci.  However, 

this is not conceptually a difficult problem and can be addressed, e.g., by Monte Carlo.   

 

8.  WHEN TO DECLARE A MALFUNCTION? 

It is not as easy here to decide when to set an alarm as it is when applying Bayesian 

sequential updating to the problem of detecting an abrupt jump from a simple null hypothesis to 

a simple alternative (Graves, Bisgaard and Kulahci 2002).  There, the posterior consisted of 

one number;  here, it is a distribution with two parameters that migrate over time.  One 

approach might be to develop (a) an appropriate cost structure and (b) a decision procedure to 

minimize the cost per unit time or total discounted cost over an indefinite future.  Related 

problems have discussed by Berger (1985, ch. 7) and West and Harrison (1999, sec. 11.6).   

We have not done that here.  Instead, we divided the real line into “acceptable”, 

“unacceptable”, and “undefined” regions:  The plant is “good” if L < x t < U, “bad” if {x t < L1 < 

L or x t > U1 > U}, and “undefined” if {L1 < x t < L or U < x t < U1};  L and U are “worst 

acceptable”, while L1 and U1 are “best unacceptable” (Box et al. 1999).   

We further simplified the problem by selecting decision limits *L  and *U  and indicating 

a malfunction when the prior variance σt+1| t is sufficiently small and x t+1| t is outside the *L - *U  

limits.  The engineering design criteria for this decision procedure (or on-board diagnostic, 

OBD) are typically expressed in terms of an acceptably small probability of an excessive delay 

(to detection of x t being bad) and simultaneously a small probability of a false alarm in the 

design life of the plant (Box et al. 1999;  2002).   
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This procedure is, apart from the changes in the weight on the last observation, a 

standard EWMA.  Run length distributions of EWMAs have been studied, for example, by 

Crowder (1987) and Lucas and Saccucci (1990), though the effect of the Bayesian non-

constant weights (13) and (21) seem not to have been described in the literature.  Decision 

limits *L  and *U  could be obtained by Monte Carlo simulation if the work of Crowder and 

others does not seem adequate.   

Steiner (1999) proposed an FIR approach using varying control limits whose width was 

a constant multiple of the standard deviation of a finite duration EWMA assuming the initial state 

is known exactly.  This produces detection limits that are initially narrow and expand to the 

standard asymptotic limits.  Our work suggests that decision limits of this nature would only be 

appropriate if the initial condition of the plant were known quite precisely.  In our experience, 

the opposite is more common:  Initial data collection is often much more informative about the 

condition of the plant than the distribution at first use.  In this case, we suspect that optimal 

detection limits would start begin wider and converge to constants asymptotically, depending on 

the assumed cost structure.   

 

9.  DISCUSSION 

In this article, we have derived Bayesian sequential updating for indirect observation of 

a univariate normal random walk.  The result is a Bayesian EWMA, previously discussed by 

Kirkendall (1989) and Harvey (1989).  Our derivation is, we believe, more methodical and 

more easily understood and generalized than previous discussions of this case.  Neither 
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Kirkendall nor Harvey discussed the objective Bayesian possibilities of using reliability / hazard 

rate data, gage repeatability and reproducibility studies, and data on the distribution at first use.   

Part of this development established that the selection of a weight for the last 

observation in an EWMA is equivalent to specifying the migration variance 2
wσ  relative to the 

noise variance 2
vσ , as discussed with (21) above.  Both of these quantities are generally 

available from external sources:  The migration variance 2
wσ  is tied to reliability.  The noise 

variance 2
vσ  can be estimated from a metrology study.  Moreover, the distribution at the 

initiation of monitoring N(x1|0, 
2
0|1σ ) is obtainable from data typically collected at the end of the 

production line for manufactured products or from other sources for monitoring in clinical trials 

or other applications.  This places at the disposal of a person designing a monitor relevant 

information whose use in this context has not been previously discussed in the literature that we 

have seen.  This also provides an alternative to traditional Fast Initial Response strategies, which 

are equivalent to assuming that the starting value used for the EWMA tells us as much about the 

condition of the plant as later values;  see Section 5 above.   

Our proposed use of gage R & R and reliability data provides an alternative approach 

for determining Kt to the integrated moving average IMA(0, 1, 1) estimation procedure 

recommended by Box and Luceño (1997, sec. 4.8).  We recommend that users do estimation 

and model criticism for an IMA(0, 1, 1) as discussed by Box and Luceño as a check on the 

assumption of the indirectly observed random walk model of (1) and (2) and the parameters 

estimated using gage R & R and reliability data.  Apart from the non-constant nature of Kt , the 

model (1) - (2) is virtually equivalent to an IMA(0, 1, 1).  Therefore, if a substantive 
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discrepancy is found either in an IMA(0, 1, 1) model or with the estimated weight Kt , it 

suggests a problem that warrants further investigation and corrective action.   

As noted in Section 7, our Bayesian EWMA is essentially as robust as traditional 

EWMA procedures, being computationally almost identical to them.  The Bayesian EWMA 

provides an additional interpretation as the prior and posterior at each step of objective 

distributions of units or plants among all with comparable histories.  We would not expect this 

probability interpretation to be robust to departures from serial independence or normality or 

from poor estimation of 2
wσ  or 2

vσ .  However, more casual usage of this theory, consistent with 

current EWMA usage, should be quite robust.   

Box and Luceño (1997) comment extensively about an EWMA as a forecast for an 

integrated moving average IMA(0, 1, 1) process.  The present development is asymptotically 

equivalent to this, and we recommend traditional EWMAs for applications where the transients 

are unimportant and the situation does not justify the effort of attempting to access other data 

such as the distribution at first use, gage R & R studies, and reliability data.   

The present study was conducted as part of a larger project to demonstrate the value of 

Bayesian sequential updating as a foundational principle for designing monitors (Graves et al. 

2001).  To detect an abrupt jump, this principle produces a “Bayes-adjusted Cusum” (Graves, 

Bisgaard and Kulahci 2002a).  If both mean and variability migrate over time, the prior for the 

next observation involves EWMAs for both mean and variance (Graves, Bisgaard and Kulachi 

2002b).  For noisy observations linearly related to a multivariate state vector, Bayesian 

sequential updating produces Kalman filters that can isolate as well as detect faults (Graves et 



Bayesian EWMA 

   06/23/02 25

al. 2001).  In applications where the output of different sensors should be related, this can allow 

one sensor to check another, supporting fault isolation without duplicating sensors and 

increasing per-unit costs.  If the migration rate is zero, this algorithm degenerates to ordinary 

least squares regression.  This work generalizes Pole, West and Harrison (1994), West (1986), 

West and Harrison (1986), Gelb (1999), Gordon and Smith (1988, 1990), Harrison and Lai 

(1999), Lindley and Smith (1972), and others.   

 

10.  ACKNOWLEDGEMENTS  

The work reported here was funded in part by the Low Emissions Research and 

Development Partnership of DaimlerChrysler, Ford and General Motors.  The authors wish to 

thank John Van Gilder and Tom Ting of General Motors, Ken Marko and John James of Ford, 

and Hal Zatorski and Cuiping Wu of DaimlerChrysler for many stimulating discussions about 

this and related monitoring issues.   

 

REFERENCES 

Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis, 2nd ed. (NY:  

Springer).   

Box, G., Graves, S., Bisgaard, S., Van Gilder, J., Marko, K., James, J., Seifer, M., Poublon, 

M., and Fodale, F. (2000) "Detecting Malfunctions in Dynamic Systems",  

Proceedings of the 2000 SAE World Congress & Exposition (SAE Technical Paper 

Series number 2000-01-0363).   



Bayesian EWMA 

   06/23/02 26

Box, G., Bisgaard, S., Graves, S., Kulahci, M., Marko, K., James, J., Van Gilder, J., Ting, T., 

Zatorski, H., and Wu, C. (2002).  “The Waterfall Chart”, Quality Engineering.  To 

appear.  

Box, G., and Luceño, A. (1997) Statistical Control by Monitoring and Feedback 

Adjustment (NY:  Wiley).   

Crowder, S. V. (1987) “A Simple Method for Studying Run-Length Distributions of 

Exponentially Weighted Moving Average Charts”, Technometrics, 29, 401-407.   

DeGroot, M. H. (1970) Optimal Statistical Decisions (NY:  McGraw-Hill).   

Gelb, A. (1999) Optimal Applied Estimation (Cambridge, MA:  MIT Press).   

Gordon, K., and Smith, A. F. M. (1988) “Modeling and Monitoring Discontinuous Changes in 

Time Series” in Bayesian Analysis of Time Series and Dynamic Models, ed. J. Spall, 

N.Y.: Marcel Dekker, 359-391. 

Gordon, K., and Smith, A. F. M. (1990) “Modeling and Monitoring Biomedical Time Series”, 

Journal of the American Statistical Association, 85, 328-337.   

Graves, S. B. (2002) “Bayes’ Rule of Information” (unpublished technical report downloadable 

from www.prodsyse.com).   

Graves, S. B., Bisgaard, S., and Kulahci, M. (2002a) “A Bayes-Adjusted Cusum” 

(unpublished technical report downloadable from www.prodsyse.com).   

Graves, S. B., Bisgaard, S., and Kulahci, M. (2002b) “A Bayesian EMWA for Mean and 

Variance” (unpublished technical report downloadable from www.prodsyse.com).   



Bayesian EWMA 

   06/23/02 27

Graves, S. B., Bisgaard, S., Kulahci, M., Van Gilder, J., Ting, T., Marko, K., James, J., 

Zatorski, H., and Wu, C. (2001) “Foundations of Monitoring Dynamic Systems” 

(unpublished technical report downloadable from www.prodsyse.com).   

Harrison, P. J., and Lai, I. C. H. (1999) “Statistical Process Control and Model Monitoring”, 

Journal of Applied Statistics, 26:  273-292.   

Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter 

(NY:  Cambridge University Press).   

Kalman, R. E. (1960) “A New Approach to Linear Filtering and Prediction Problems”, 

Journal of Basic Engineering, 340-345.  

Kalman, R. E., and Bucy, R. (1961) “New Results in Linear Filtering and Prediction Theory”, 

Journal of Basic Engineering (Transactions of the ASME), vol. 83D, pp. 95-108.   

Kirkendall, Nancy J. (1989) “The Relationship Between Certain Kalman Filter Models and 

Exponential Smoothing Models”, pp. 89-107 in J. B. Keats and N. F. Hubele, 

Statistical Process Control in Automated Manufacturing, NY:  Marcel Dekker.   

Lindley, D. V., and Smith, A. F. M. (1972) “Bayes Estimates for the Linear Model”, Journal 

of the Royal Statistical Society, Series B, 34, 1-41.  

Lucas, J. M., and Saccucci, M. S. (1990) “Exponentially Weighted Moving Average Control 

Schemes:  Properties and Enhancements” (with discussion), Technometrics, 32(1), pp. 

1-29.   

Nembhard, H. B., and Mastrangelo, C. M. (1998) “Integrated Process Control for Startup 

Operations”, Journal of Quality Technology, 30(3):  201-211.   



Bayesian EWMA 

   06/23/02 28

NIST (2001) Engineering Statistics Handbook (Washington, DC:  National Institute of 

Standards and Technology web-based handbook: http://www.itl.nist.gov/div898/ 

handbook) 

Pole, A., West, M., and Harrison, H. (1994) Applied Bayesian Forecasting and Time Series 

Analysis (NY:  Chapman & Hall)  

Roberts, R. W. (1966) “A Comparison of Some Control Chart Procedures”, Technometrics, 

8:  411-430.   

Srivistava, M. S., and Wu, Y. (1993) “Comparison of EWMA Cusum, and Shyryayev-Roberts 

Procedures for Detecting a Shift in the Mean”, Annals of Statistics, 21:  645-670.   

Steiner, S. (1999) “EWMA Control Charts with Time-Varying Control Limits and Fast Initial 

Response”, Journal of Quality Technology, 31:  75-86.   

West, M. (1986) “Bayesian Model Monitoring”, Journal of the Royal Statistical Association 

B, 48:  70-78.   

West, M. and Harrison, P. J. (1986) “Monitoring and Adaptation in Bayesian Forecasting 

Models”, Journal of the American Statistical Association, 81, 741-750. 

_______ (1999) Bayesian Forecasting and Dynamic Models, 2nd ed. (NY:  Springer).   



Bayesian EWMA 

   06/23/02 29

Figure 1.  Bayesian Sequential Updating with a Random Walk  

Step 1.  Observation,  Updating knowledge 
using Bayes’ Theorem 

1.1.  Preparing  
a.  Predictive distribution  
b.  Posterior variance 
c.  Kalman gain 

1.2.  Updating 
a.  Prediction error 
b.  Posterior mean 

Step 2.  Transition and the prior for the next 
observation

2.1.  Posterior mean 
2.2.  Posterior variance 
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Figure 2.  Bayesian EWMA Iteration  
 

Step 1.  Observation, updating knowledge using Bayes’ theorem  
1.0.  Observation model  

a.  Prior  (x t | Dt–1) ~ N(x t| t–1, 
2

1| −ttσ ) (from step 2) 

b.  Observation  (yt | x t) ~ N(x t , 2
vσ ) (2) 

1.1.  Preparing  
a.  Predictive distribution       (yt | Dt–1) ~ N(ft , 

2
1| −tyσ ),  

 ft = x t| t–1, 
2

1| −tyσ  = 2
1| −ttσ  + 2

vσ  (9)  

b.  Posterior information and variance   22
1|

2
|

−−
−

− += vtttt σσσ  (11)  

c.  Kalman gain   Kt = 22
|

−
vtt σσ  (13)  

1.2.  Updating  
a.  Prediction error   et = yt – ft  (15) 
b.  Posterior mean   tttttt eKxx += −1||   (16) 

Step 2.  Transition and the prior for the next observation  
2.0.  Model   (x t+1 | x t) ~N(x t, 2

wσ ) (1)   
2.1.  Posterior mean   x t+1| t = x t| t  (17) 

2.2.  Posterior variance   2
|1tt +σ  = 2

|ttσ  + 2
wσ  (18) 

 
In sum:  Combining (14) - (16):   

 ( ) ( ) ttttttttttttt yKxKxyKxx +−=−+= −−−+ 1|1|1||1 1  (19) 

where  

 ( )[ ]{ } vwtt KK σσρρ =++= − ,111 1
2  (21) 

 ( ) ( ){ }1412 22 −+=→ ∞ ρρK  (22) 
For confidence limits, combine (11) and (18):   

 2
|1tt +σ  = ( ) 122

1|

−−−
− + vtt σσ  + 2

wσ   
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Figure 3.  A Bayesian EWMA  
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Figure 4.  Kalman Gain for EWMA vs. Time  
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Figure 5.  Equivalence between EWMA Weight and Relative Migration Rate  

Migration Rate σw Relative to the Noise σv :  
Relative Migration Rate  ρ = σw / σv
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Table 1.  Bayesian EWMA Computations  

Prediction x t+1| t for time (t + 1) given information Dt = {yt, yt–1, ...}, available at time 

t:   

 x t+1| t = (1 – Kt)x t| t–1 + Ktyt = x t| t–1 + Ktet ,  et = (yt – x t| t–1) (19) 

Weight on the last observation (Kalman gain):   

 Kt = 1 / { 1 + [1/(ρ2 + Kt–1)] } (21) 
where  

ρ2 = 22
vw σσ  = (migration variance) / (measurement variance)  

and  
K1 = 1 with no prior knowledge of the initial condition of the plant 

Confidence bounds on x t are obtained from (x t | Dt–1) ~ N(x t| t–1, 2
1| −ttσ ), where  

 ( ) 2122
1|

2
|1 wvtttt σσσσ ++=

−−−
−+  (11) & (18) 

Evaluate prediction error et relative to  

 var(yt | Dt–1) = 22
1| vtt σσ +−  (9) 
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Table 2.  Univariate Bayesian Sequential Updating:  Illustrative Calculations  
Table 2.1.  Scenario Simulated  

Manufacturing distribution     
 Mean Variance Standard Deviation  Information  
 x1|0 2

0|1σ  0|1σ  2
0|1

−σ  

 0 0.1     0.316  10 
Observation error  Variance  Standard Deviation Information 

  2
vσ  vσ  2−

vσ  

    0.01 0.1 100 
Migration Mean Variance  Standard Deviation  Information  

 µt 2
wσ  wσ  

2−
wσ  

“Actual”   0.03 0 0 ∞ 
Assumed 0      0.001      0.0316 1,000 

Table 2.2.  Illustrative Calculations  
 Simulated  Prior from Previous Step 2 Intermediate Computations in Step 1 
 True Observation  Posterior Kalman Prediction 
 State yt = Mean Variance Information Information Variance Gain  Error   
Time  x t x t + v t 1| −ttx  2

1| −ttσ  2
1|

−
−ttσ  2

|
−
ttσ  2

|ttσ  Kt et 

eq’n→(1) (2) (17) 
[+(16)] 

(18)  (11)  (13) (15)+ 
(8) 

 1 – 0.103 – 0.063 0 0.1000 10.0 110.0 0.00909 0.909 – 0.063 
 2 – 0.073 – 0.097 – 0.057 0.0101 99.1 199.1 0.00502 0.502 – 0.040 
 3 – 0.043 – 0.084 – 0.077 0.0060 166.0 266.0 0.00376 0.376 – 0.007 
...         ... 
19    0.437    0.497    0.396 0.0037 270.2 370.2 0.00270 0.270    0.101 
20    0.467    0.698    0.423 0.0037 270.2 370.2 0.00270 0.270    0.275 
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21    0.497     0.497 0.0037 270.2     
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Figure Captions  
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