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Bayesan EWMA
Desgning Bayessan EWMA Monitors

Using GageR & R and Reliability Data

ABSTRACT
We derive an exponentidly weighted moving average (EWMA) as the Bayesian prior
mean for arandom walk observed with normal error. This derivation shows how the weight on
the last observation varies over time. This weight depends on the migration rate of the random
wak and the noise variance, which can be estimated from reliability data and studies of gage
repegtability and reproducibility, respectively. The variations in the weght on the last
observation provide a solution to the “fast initid responsg’ problem that we believe is intuitively

more satisfying than the current sandard solution.

KEY WORDS:. Exponentialy weighted moving average; Fast initid response (FIR); Bayesian
Sequentid Updating; Gage repeatability and reproducibility; Hazard rate;  On-board

diagnostics (OBDs).

1. INTRODUCTION
Our productivity, comfort and health in modern society require the proper functioning of
increesing complex systems subject to a growing variety of madfunctions. The increasing
computerization of such systems (which we cal “plants’ for congstency with the control theory

literature) provides opportunities for increasingly sophisticated monitors designed to detect and
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isolate faults, thereby limiting potentia damage and facilitating repairs. Current law requires that
al new automobiles sold in the US, Canada and Europe have “onboard diagnostics’ (OBDs)
to detect and isolate Stuations that might compromise emisson controls. These concepts could
a0 be gpplied in manufacturing, public hedth, clinicd trids, and monitoring financid figures. In
this article, we gpply the principle of Bayesan sequentid updating (Figure 1) to a random walk
observed with error, obtaining thereby a Bayesan exponentidly weighted moving average
(EWMA) with parameters determined from reliability / hazard rate data and gage repestability
and reproducibility studies. For an gpplication of Bayesan sequentid updating to detect an
abrupt jump, see Graves, Bisgaard and Kulahci (2002); for more generd applications, see
Graveset a. (2001).
(Figure 1 about here)
Condder a physcd sysem with a condition x; that is not directly observable but that is
assumed to follow arandom walk, as
Xeet = M+ X+ W, We~N(O, S ), (1)
where m represents a potentia deterministic drift, and w; represents an unpredictable portion of

system reliability. In Section 2, we show how mand s ,, relaeto the reliability hazard rate. In
particular, we show that any reliability distribution can be modeled in teems of s |, or (m,
S wi)-

The andyses of this report assume we can model adequately the digtribution of x; at first

use, t =1. No monitor is designed for a completely unprecedented application: The time and

money to design and use a monitor is judtified from experience with other gpplications, which
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can be usad to estimate a didtribution at first use. For a manufactured product, this could be
obtained from control chart data collected at the end of the production line. If this is a new
product, the digtribution at first use could be estimated from the history of smilar products,
adjusted if gppropriate consdering design objectives, prototype test data, and previous new
product introductions. In biostatistics, it could be obtained from previous clinicd trids of
roughly comparable thergpies. In portfolio management, one could consider the behavior of

amilar finendid instruments. In thisarticle, we shall assume that X1 ~ N(X1j0, S ]fo).
In Section 3, we consider a process of the form (1) (with m=0ad s, = s,

constant) observed with error,

Vi=X+V;, Vi~N(O,s?2). %)
In many Studtions, s, can be estimated from a study of gage repeatability and reproducibility
(NIST 2001, ch. 2).

With adequate estimates of the distribution at first use, the hazard rate and s, we can
edimate the relative frequency distribution of the condition of plants a any future point in time,
among dl plants with comparable observed higtories.  Subjective probabilities can be used, but
objective probabilities are dso avalable, within the limits of estimation precison and the
comparability of theinitid reference st.

The conceptud framework is outlined in Figure 1, with mathematica details summarized
in Table 1. The result is an exponentidly weighted moving average (EWMA), except thet the
weight on the lagt observation varies with time.  When the migration variance is a congant

fraction (or multiple) of the observation noise variance, this weight converges to a condant;
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except in Section 2, we assume that in (1), m=0and s v2v,t = s 2, acondtant. Expression
numbersin Table 1 are keyed to the discussion below.
(Table 1 about here)

This procedure provides afast initid response (FIR) gpproach thet is different from the
FIR technique in the literature and is clearly tied to information obtainable for virtudly any
monitoring gpplication: the digribution of the condition of the plant at first use, x4, the rdiability,
codedin s ,, and the messurement noise s , . |If the condition a first use is non-informative,
this theory sets K; = 1 and has K, declining monotonicaly to an asymptote as information about
X; accumulates. We bdieve this has much greeter intuitive apped than the traditiond FIR

gpproach, which essentialy asserts thet the prior at t = 1 isasinformative asthe prior a any t >

1.

This FIR gpproach is discussed in Section 6 after consgdering an example in Section 4
and discussing further the asymptotic behavior of the dgorithm in Section 5. Questions of
robustness are considered in Section 7. Section 8 considers when to declare amafunction, and
asummary discussion of this “norma random walk observed with error” appears in Section 9.
The Bayesan EWMA is in fact the amplest Kdman filter, dthough a Bayesan development

differs from the minimum mean square prediction error principle used by Kaman (1960).

2. HAZARD AND MIGRATION RATES

We show here how the migration parameters (m, s . ) in (1) determine the religbility

digtribution, expressed in the hazard rate h;, and conversely how the hazard rate constrains m
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and determines s . given m. Of course, complex systems, whether products, production

processes or humans, can be impacted by many different kinds of problems. We assume that hy
is the hazard rate relevant to a process x; observed indirectly via y;.. Standard techniques in

biogtatistics and rdiability support cause-pecific estimation of hazard rates.

To understand the relationship between (m, s ;) and h;, we start by assuming that x;

isgood aslong as L < x; < U. If thedidribution &t first useis X1 ~ N(X1j0, S ]fo), thenh; =hy

+ hy 1, where
o -Xx,,0
h1,o = 140:
Sp g
and
e a- x,
h,=6&-F £, (3)
g Sp 4

For a manufactured product, h; is the proportion of units with x; outside (L, U) or that fal for
this reason when the customer firg attempts to use them.
Let Fi(x;) = Fi(x | L < x; < U, fordl t < t) bethe cumulative distribution function

(cdf) for x; given that it is not bad and has not previoudy been bad. Then

10 it x <L
!
T 88 - X, 0
e
F(x)=i_& Sw & if LEx <U @
| 1 h
|
i1 it U £x,
1
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Starting from (3) and (4), we derive the hazard rate h; and the cdf for x; good F(x;) recursvein
pieces as follows. Firg, let F; o(x;) be the cdf for x; good or bad at timet given thet it has not

previousy been bad as

B - X ,-m,0
Ft,O(Xt) = dzé%zdﬁ-l(xt-l) ' )
wit-1 4]

t =2, 3, .... Thenthe proportions of units too smal and too large a time t among those good
at—1are

ho = FI,O(L)’
and
ha=1- FiolU).
The hazard rate a timet isthe sum of those failing both smdl and large, as
he=hyo+ hy 1. (6)
The digtribution of those Htill good is the truncated didtribution from F o, as
i0 if x <L
= if LEx <U.
| eTH % (7
f1 if U £ x

From (3) - (7), we see that the sequence (m, s ,,, ) uniquely determines the hazard rate.

Conversdy, if L < X350 < U and m =0 for dl t, then h; is monotonicaly increasng in
Swia andisOwhen sy, 4 =0. Thus, inthiscase, h; uniquely determiness,,;. [Expressions (1)
and (3) - (7) can be generdized to a multivariate state space by assuming that x; isbad if it is
outside an acceptance region A and defining F; in the obvious way for dl Bord sets. In this

more generd setting, the parameters of the trangtion distributions uniquely determine the hazard

7 06/23/02



Bayesan EWMA

rae. With suitable additiond redrictions, the hazard rate can uniquely determine some
univariate aspect of the migration distribution.]
Therefore, given data on product reliability or time to onset of an adverse reactionin

clinicd trids, a reasonably parsmonious model can be built for (m, s ) consistent with

avalable data. This does not require data on a new product or therapy never used before; it

only requires data on previoudy tested products or therapies believed to be comparable.

3. UNIVARIATE BAYESIAN UPDATING AND AN EWMA

Now suppose we have y; being anoisy observation of the unknowable state of the plant
Xi, per (2. We shdl aoply Bayesan sequentid updating to this example with the added
amplifications of assuming m = 0 and s = Sy = condant. We shdl find that this gives us an
exponentidly weighted moving average (EWMA) in the limit for large t with an intuitively
satisfying Bayesian answer to the fad initid response (FIR) problem. This gpproach will be
compared to the traditiond FIR in Section 6 beow, after discussing sample computations in
Section 4.

As outlined in Figure 1, Bayesan sequentid updating is a two-step process. “1.
Observation” and “2. Trandtion”. We find it convenient here to divide step 1 into substeps
“11. Preparing’ and “1.2. Updating’. Thisdigtinction highlights the fact that “1.1. Preparing”
can take place between the previous execution of step 2 and the current “1.2. Updating” step.
With gationary systems most of “1.1. Preparing” can be computed offline in advance of the
goplication. With traditional Kaman filtering (and traditiond EWMAS), the Kdman gain is

often replaced by an asymptotic vaue, and its trangents are ignored. This can help reduce
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demands on a real-time microprocessor, dlowing in some cases the use of a chegper
MIi Croprocessor.

We will preface this development with a brief comment about notation:  As indicated
with (1) and (2), observations y; provide information about an unknown State of nature x;. Just
before each observation arrives, our knowledge of x; is summarized in the prior (X; | Di-1) ~
N(Xqe-1, S ¢.1), Where Ds = { Yo, Yia, - Y1, Xajo, S go}; @ timet = 1, thisis the distribution at
firg use. Step 1in Fgure 1 transforms this prior into the posterior (; | D;), which we show is

normal, N(Xyt, S qzt ), say. Step 2 then models a transtion from x; to X1, and our knowledge
then degrades accordingly to (Xi+1 | Dt) ~ N(X¢sayt, S im ), which becomes the prior a the next

point in time. We now consider specifics of these steps.
Step 1.1. Preparing. We divide step 1.1 further into three substeps. (1.18)
Predictive Digtribution, (1.1b) Pogterior Variance, and (1.1c) Kdman Gain, as we now explain.
Sep 1.1a. Predictive Distribution. We begin by combining : | Di1) ~ N(Xgjt1,
S t|2t-l) with the observation process (2) and integrating out the unknowable x; to get the

predictive distribution as follows:

(yt | Dt—l) - N( fh S 5|t-l)'
where
ft = Xqe1, 8

since the expected value of the sum in (2) isthe sum of the expectations, and

2 _ 2
S yt-1 — St|t-1 +S 2’ (9)

snce the variance of a sum of uncorrdated random variables is the sum of the variances. We
maintain the distinction between f; and X, because they serve different functions, as witnessed
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by the fact that their associated confidence intervas are different, even though the quantities
themsalves are in this gpplication numericaly identical. This notationd digtinction makesit eeser
for us to understand the EWMA and explain its different properties. It aso makesit easier for
usto generdize this procedure to stuations where f; and X1 may be different.

Sep 1.1b. Posterior Variance. Fisher's efficient score [derivative of the log dengty,

1(...)] of the posterior isthe prior score plus the score from the data:

T 1D) _Mi(x 1D.,), T{y, %)
% % Iix,

é X - X u é x - u
— A t-17 % = Yi ”
- € 7 Uté 2 U (10)
e St|t-l g e Sy @

Graves (2002) calls this “Keeping score with Bayes theorem.” From this, we see that the
posterior scoreis linear in X, and can therefore be written [ (x[ - Xy )/s f,] for appropriately
chosen xy: and s tft. The integra of this gives us the logarithm of the pogterior dendty as a
parabola up to an additive congtant. Since the support of X, runs over the entire red line, this
proves that the posterior is N(Xq, S i )-

To determine s t|2t , We take another derivative of (10). This gives us “Bayes Rule of

Information” (Graves 2002) that the podterior (observed) information is the sum of the
information from the prior and the data, which in thiscaseis

Sy =Sy1tsy (11)
As noted by Graves (2002), this holds for the observed information [negative second derivative
of log(dengity)] quite generdly, even with non-regular likeihood where it does not hold for the
Fisher (expected) information. DeGroot (1970) cdls a reciproca squared scale factor a

“precigon”. However, reciproca squared scale factors do not necessarily add with Bayes
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theorem except with norma digributions.  Therefore, to emphasize the generdity of (11), we
ghdl usethe term “information” for the normd reciprocal variance in thisarticle.

Sep 1.1c. Kalman Gain. We now let x; = 0 in (10) and solve for xy; asfollows:
X = S 2{s i %es +5 02V} (12)
The weight on the last observation y; in (12) is caled the Kaman gain and will be denoted as
follows
Ki=sgs.”. (13)

We solve (11) for s t-|t2- , and subdtitute the result with (13) into (12) to get

) -2
XtIt_stn{(sqt

-S \-/Z)th-l +5 ;Zyt}
= Xyoo t Kt(yt - Xt|t-1)' (14)

For plants with Sationary trangtions and constant observation and trangtion variances
(which we assume here), dl the computations of substep 1.1 can be done offline except for the
mean of the predictive digribution.  With or without those offline computations, if these
“preparations’ are done prior to the arrival of the latest observation y; it can shorten dightly the
time required to update our knowledge of the state of the plant.

Step 1.2. Updating. In “updating”, we compute the prediction error and use that to
update the “ posterior mean”, our point estimate of the state of the plant.

Sep 1.2a. Prediction Error. When the observation y; arives, we compute the

prediction error as,

a=y-f. (15)
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Sep 1.2b. Posterior Mean. With the prediction error in hand, we multiply it by the
Kaman gain and add the product to the prior mean to obtain the posterior mean per (14), as
Xgr = Xy, + K& (16)
This completes sep 1, observation, in Bayesian sequentia updating as outlined in Figure
1. Next, we permit the plant to trangition in preparation for the next observation, per step 2.
Step 2. Transition and Prior for the Next Observation. Given the posterior mean
and variance from step 1, we can easily compute using (1) the prior mean and variance for the
next observations, as follows:
Sep 2.1. Prior Mean.
Xerajt = Xt 17)
and

Sep 2.2. Prior Variance.
S

Gp=Sgts. (18)

This completes step 2. The resulting prior digtribution a one point in time N(Xe+qyt,
S ;) becomes an input for step 1.1, N(Xye1, S ;). & the next point in time. In this way,
observations are processed sequentidly asthey arrive. If themodd (1) - (2) is correct, then the
prior N(X+1jt, S fﬂu) summarizes dl the information in Dy = {V, Ye1, ..., Y1, X1j0, S1/0} about the
dtate of the plant just prior to observation ;. ;.

The most important expressons in this section are summarized in Figure 2. We next
aoply this iteration to an example (Section 4) before deriving some genera properties of this
case. These properties include the convergence of the Kalman gain to an asymptote (Section
5). This convergence turns out to be monotonic, which helps to establish it as a naturd

Bayesan answer to the fast initid response (FIR) problem. Thisis followed by discussons of

12 06/23/02



Bayesan EWMA

robustness (Section 7), threshold sdlection (Section 8), and concluding remarks on EWMAS
(Section 9).

(Figure 2 about here)

4. SAMPLE COMPUTATIONS FOR A BAYESIAN EWMA

Sample computations using this procedure are given in Table 2 and Figure 3. As
suggested in the summary box at the bottom of Figure 2, we redly only need three columns
from Table 2.2: the prior mean and variance and the Kdman gain. The remaining columns of
Table 2.2 are provided to describe more clearly the machinery of Bayesan updating as
discussed with Figures 2 and 1.

(Table 2 about here)
(Figure 3 about here)

Numbers for smulated “true state’” and “observation” are given in the second and third
columns of Table 2.2. These were obtained as pseudo-random numbers generated according
to the “manufacturing digtribution”, “observation error”, and “migration” described in Table 2.1.
The manufacturing didtribution is assumed to be norma with mean, variance, and informéation as
given in Table 2.1; these define the prior a time t = 1. We begin computing the “posterior

"2 =10+ 100 = 110.

v

information” for observation 1 using expression (11), ass ;* =S 5 +
The posterior variance s :121 = 1/110 = 0.00909. The Kaman gain is obtained from (13) as K;
=s’s 22 =0.00909 ~ 100 = 0.909. The prediction error (-0.063) is obtained as usud as
the observation (—0.063) minus the forecast O, per (15) and (8). The posterior mean, per (16),

13 06/23/02



Bayesan EWMA

is then the prior mean plus Ky e = 0 + (0.909) = (-0.063) = (-0.057); this appearsin Table
2.2 astheprior for timet = 2, per (17).

Note that the prior and posterior variances and information terms, S ., S, S 41

and s t'lf, and the Kdman gain, K, dl converge to congants to three sgnificant digits by

observation t = 20. This occurs here because s, and s, are congtant. Thisisaspecid case of
a more genera result that for “completely observable” modds (Gelb 1999, p. 142; Kaman
and Bucy 1961) with congant, linear trangtions and congtant observation and trangtion
covariance matrices, the Kaman gain and the prior and pogterior covariance matrices al

converge to congtants. We next consider more carefully the behavior of K; in this EWMA case.

5. KALMAN GAIN FOR A BAYESIAN EWMA

In this section, we study the behavior over time of the Kaman gain of (13) and tie more

carefully the above modd to a traditiond EWMA. Firgt, we combine (14) with (17) to obtain
the fallowing:

Xeejt = Xeje1 + Ke(Yt — Xeje1)

= (L K )xyr + Ky, (19)

This shows more clearly than (12) that the posterior mean X:.1: is a weighted average of X1

and y:. By recursvely subgtituting (19) into itself, we can show that X..1; IS aweighted average

of v, ] =0, 1, ..., with weights declining exponentialy, provided 0 < K; < 1 and K is bounded

away fromOast ® ¥. [Box and Lucefio (1997, p. 69, 91) show how (19) impliesthat X1 iS
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aweighted average of yi, ] =0, 1, ..., with weights declining exponentidly assuming K; = Ky is
constant.]
To confirm that 0 < K, < 1, subgtitute (11) into (13) to obtain the following:
Ki=sgs, = (siti+s ) 's 7 = (1es s 2" (20)

Buts?Zands t|2t—1 are both variances and strictly positive, from which we conclude that 0 < K

<1 We ghdl develop a recurson for K, which becomes K; = L/t when K; = 1 and the
migration rate s,, = 0. This will edablish that Xw1: in (19) isin this case a Smple average
updated one observation at atime. For arigorous proof of the asymptotic behavior of K;, we
will refer the reader to the more generd result of Kalman and Bucy (1961, theorem 5), though
we will derive expressions for that asymptote and discuss its nature.

To derive arecurson for K;, wefirg subgtitute (18) into (11) to obtain the following:
Sy = (s e +sV2V)'1 +s.?
=s V'z{(r 2+s 7y, /s Vz)'l +1} ,
wherer = s W/s , - We multiply both sides of this equetion by s 2 and recall the definition of
K4, (13), to get the following:
K= {(r 24K, +1} . (21)
In Figure 4, we present the behavior of K; over time for different levels of r assuming

S = ¥. A smilar andysis would establish that s, and s also approach asymptotes,
which we denote by s ¢,,, and s, with an obvious abuse of notation. These latter two
asymptotes mugt satisfy (11) and (18), which meansthat s 5., > 'Sy -
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(Figure 4 about here)

This figure suggests that K; goes to an asymptote, Ky, say, that depends on r.
Moreover, for r > 0.3, thisasymptote is essentidly achieved by observation 10. Forr > 3, the
asymptote is essentidly achieved by t = 2. For r < 0.1, the asymptote is not achieved 10
observations. We shdl see below that for r = 0, this asymptote is O; otherwise, this suggests
that K; is bounded away from 0, which with (19) establishes that X.1;: isamoving average of dl
previous observations with weights declining exponentidly with age. For a rigorous proof of
this, see the more genera work of Kaman and Bucy (1961). For a Smilar discusson of the
EWMA, see Kirkendall (1989) and Harvey (1989, pp. 119, 124).

To obtain a formula for this asymptote, we subdtitute Ky for both K; and K. in (21)

and solvefor Ky. We get the following:

:r_{ 1+(4/r 2 -]} (22)

To study the asymptotic behavior of Ky asr getslarge or smal, we use the binomia theorem as
V1+x =1+ (x/2) - (x%8) + O(x®) in these last two expressions to get the following:

K, =1- r2+0(r )

=r{1- (r /2)+(r 2/9)- (r */128)+ O °}}.

The asymptote (22) is plotted vs. r in Figure 5. The most obvious conclusion from (22)

(23)

and Figures 4 and 5 is tha the choice of weight on the last observation is equivaent to

2

goedifying r = the square root of the migration variance, s, as a proportion of the
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measurement noise, s 2. This relationship quantifies what we would qualitatively expect: With

processes that change dowly relatively to the measurement noise, hitory is more informative
that the last observeation. On the other hand, repidly changing processes with relatively
informative observations find recent history more relevant than the past for predicting the future.
The asymptotic expansions in (23) quantify the behavior we see in Figure 5 for large and small
r.

(Figure 5 about here)

For future reference, we multiply K, in (22) by s ? to obtain the asymptotic posterior

variance s ,, per (13) asfollows

Sew :%sj{1/1+‘4/r 2). ]}

Similarly, we use (18) to get the asympitotic prior variance s §+u¥ asfolows

S L :%s j{1/1+i4/r 2i+l}. (24)

If the initial prior variance s j, exactly equals the asymptotic prior variance s ¢, , the
weight on the last obsarvation K; will be congtant, giving us a traditiond EWMA. If, asis
usually the case, Sy, > Sy, . the Kaman gan will start lager than Ky and decline
monotonically towards it. If s 35 < s, , the Kalman gain will start smaller than Ky and

increase monotonicdly towards it, reflecting the fact that we now lose more information from

migration than we gain from each observation
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6. BAYESIAN AND TRADITIONAL APPROACHES TO FIR FOR EWMA

Lucas and Saccucci (1990) observed that in many applications of a traditiond EWMA
[with a congtant weight on the last observations K; = Ky in (19)], the resulting EWMA may
require too many observations to cross a threshold if the plant is bad, arting with x10 = m.
Their solution isto start with 25, 50 or 75 percent “head art”, i.e., with Xy 0= m + p(m — my),
wherep = 0.25, 0.5, or 0.75.

Bayesan sequentia updating, as outlined in Figures 1 and 2, seems to provide a more
comprehensve and understandable gpproach to this important problem: In terms of the theory
developed in Sections 3 - 5 above, Lucas and Saccucci essentially assume that S1j0 = Sy
[see (24)], but that x,, is misspecified and is better given as x,, = my + p(m — my), wherep =
0.25, 0.5, or 0.75. A congant weight on the last observation K, implies that the starting value

for the EWMA x,, tells us as much about the condition of the plant as X,y , the vaue of the

EWMA after 100 observations. While this would very rarely be true, there might be many
gtuations where the benefits from using a varying K; might not judtify the work of esimating
migration and noise variances and computing K; with each observation.

The data required to determine a changing K; isvirtudly dways avalable. A monitor is
amog never designed for a Stuation (plant), that is totaly unique. Someone suspects that a
fault of a certain type may occur. This suspicion is based on somebody’ s experience with other
gpplications that bear some resemblance to the problem at hand. This experience provides

access to an externd reference digtribution and data on the rdiability of the plant from which

esimates for the initid prior (Xyo, s]fo) and migration variance s 2 can be derived. We
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combine this with a gage repeatability and reproducibility study (e.g., NIST 2001, ch. 2) to
edimate the noise variance s 2. In this way, Bayesian sequentia updating shows a person
designing a monitor precisaly how to use thisrdlevant information; the previoudy exigting theory
seems slent about the relevance of this information and how to useit.

For the FIR problem, this recommends adjusting s jo, not Xyjo, in theiinitid prior. The

disadvantage is that the weight on the last observation is not constant but must be updated with
each observation per (21) until convergence to Ky is essentidly achieved.

Steiner (1999) suggested varying the control limits, usng the variance of an EWMA
assuming the first observation is known exactly. This produces initid detection limits that are
tighter than the asymptotic limits. In our judgment, thisis exactly the opposite of what is needed
in most FIR gpplications, where a fast initid response is needed precisely because of initid
uncertainty regarding the sate of the plant. We suspect that detection limits should perhaps dso
vay with time, as Steiner suggests.  However, the “best” limits should be driven by an
appropriate cost structure. As noted in Section 8 below, thisis beyond the scope of the present
article,

Findly, we believe tha Bayesan sequentid updating, as exemplified by the current
work, provides a comprehensive theoretic foundation for work on the short run process control

problem, recently discussed, e.g., by Nembhard and Mastrangel o (1998).
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7. ROBUSTNESS

Box has noted that robustness is often more important than optimdity, since a
theoreticdly optima solution may be so non-robust thet it performs miserably under common
discrepancies between redlity and standard assumptions. Box and Lucefio (1997, pp. 117-
127) find that the EWMA provides a quite robust procedure for tracking a drifting process,
even if the migration mechanism differs subgtantidly from the random wak of (1). Thisis
congstent with other work, eg, Srivistava and Wu (1993) and Roberts (1966), that finds that
the EWMA performs reasonably well under a broad variety of circumstances, though not as
well as acumulative sum in reacting to certain aorupt jumps.

However, a procedure may be robust to one kind of modd inadequacy but quite
sendtive, nonrobug, to another. For example, an EWMA may follow a process average
reasonably well even if the trangtions differ substantidly from the random walk of (1) and the
weight on the last obsarvation differs from the optima. However, we would expect that

confidence intervals using the predictive or the prior variance, (9) or (18), might not perform

2
w k)

vay wel if ether the messurement or the migration variance, s’ or s 2, were poorly

edimated. Traditiond methods for estimating these parameters and evaluating the applicability
of thismode are discussed by Box and Lucefio (1997, pp. 117-127).

There is a present another practica disadvantage to the use of our Bayesan EWMA,
(19) with (21): We do not currently have a smple method for edtimating the run length

characterigtics for the Bayesan EWMA, other than suggesting that it probably does not differ
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subgtantidly from the traditiond FIR technique proposed by Lucas and Saccucci. However,

thisis not conceptudly a difficult problem and can be addressed, e.g., by Monte Carlo.

8. WHEN TO DECLARE A MALFUNCTION?

It is not as easy here to decide when to set an darm as it is when gpplying Bayesan
sequentia updating to the problem of detecting an dorupt jump from a smple null hypothesis to
a smple dternative (Graves, Bisgaard and Kulahci 2002). There, the posterior consisted of
one number; here it is a didribution with two parameters that migrate over time. One
approach might be to develop (a) an appropriate cost structure and (b) a decision procedure to
minimize the cost per unit time or total discounted cost over an indefinite future. Related
problems have discussed by Berger (1985, ch. 7) and West and Harrison (1999, sec. 11.6).

We have not done that here. Instead, we divided the red line into “acceptable’,
“unacceptable’, and “undefined” regions The plant is“good” if L <x; < U, “bad” if {X;<L; <
L or X > U; > U}, and “undefined” if {L;<x;<LorU<x <U;}; LadU are“worst
acceptable’, while L; and U are “best unacceptable’ (Box et a. 1999).

We further smplified the problem by sdlecting decision limits L™ and U™ and indicating
amafunction when the prior variance s .y is SUfficiently smal and x..1 isoutsde the L'-U”
limits. The engineering design criteria for this decison procedure (or on-board diagnostic,
OBD) are typicaly expressed in terms of an acceptably small probability of an excessive delay
(to detection of x; being bad) and smultaneoudy a smal probability of a fdse darm in the

design life of the plant (Box et d. 1999; 2002).
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This procedure is, apart from the changes in the weight on the last observation, a
gandard EWMA. Run length digtributions of EWMAS have been studied, for example, by
Crowder (1987) and Lucas and Saccucci (1990), though the effect of the Bayesian non
congtant weights (13) and (21) seem not to have been described in the literature. Decison
limits L' and U~ could be obtained by Monte Carlo smulation if the work of Crowder and
others does not seem adequate.

Steiner (1999) proposed an FIR gpproach using varying control limits whose width was
acongtant multiple of the standard deviation of afinite duration EWMA assuming the initid Sate
is known exactly. This produces detection limits that are initially narrow and expand to the
gandard asymptotic limits. Our work suggests that decision limits of this nature would only be
aopropriate if the initia condition of the plant were known quite precisdy. In our experience,
the opposite is more common:  Initid data collection is often much more informative about the
condition of the plant than the digtribution at first use. In this case, we suspect that optimal
detection limits would start begin wider and converge to congtants asymptoticaly, depending on

the assumed cost structure.

9. DISCUSSION
In this atide, we have derived Bayesan sequentiad updating for indirect observation of
a univariate normd random wak. The result is a Bayesan EWMA, previoudy discussed by
Kirkenddl (1989) and Harvey (1989). Our derivation is, we bdieve, more methodical and

more eesly understood and generalized than previous discussons of this case.  Nether
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Kirkendd! nor Harvey discussed the objective Bayesian possibilities of using rdiability / hazard
rate data, gage repeatability and reproducibility sudies, and data on the digtribution at first use.
Pat of this devdopment established that the sdection of a weight for the last

observation in an EWMA s equivaent to specifying the migration variance s 2 relative to the

noise variance s 2

\VAR

as discussed with (21) above. Both of these quantities are generdly
available from externa sources: The migration variance s 2 is tied to rdiability. The noise
vaiance s 2 can be esimated from a metrology study. Moreover, the distribution a the
initiation of monitoring N(X1p0, S jo) is obtainable from data typicdly collected at the end of the

production line for manufactured products or from other sources for monitoring in clinica trids
or other gplications. This places a the digposa of a person designing a monitor relevant
information whose use in this context has not been previoudy discussed in the literature that we
have seen. Thisaso provides an dternative to traditional Fast Initia Response strategies, which
are equivadent to assuming that the starting vaue used for the EWMA tells us as much about the
condition of the plant as later values;, see Section 5 above.

Our proposed use of gage R & R and reliability data provides an aternetive approach
for determining K; to the integrated moving average IMA(O, 1, 1) estimation procedure
recommended by Box and Lucefio (1997, sec. 4.8). We recommend that users do estimation
and mode criticism for an IMA(O, 1, 1) as discussed by Box and Lucefio as a check on the
assumption of the indirectly observed random wak mode of (1) and (2) and the parameters
edimated using gage R & R and reliability data. Apart from the non-congtant nature of K, the

mode (1) - (2) is virtudly eguivdent to an IMA(O, 1, 1). Therefore, if a substantive
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discrepancy is found ether in an IMA(O, 1, 1) modd or with the estimated weight K, it
suggests a problem that warrants further investigation and corrective action.

As noted in Section 7, our Bayesan EWMA is essentidly as robust as traditiond
EWMA procedures, being computationdly amogt identica to them. The Bayesan EWMA
provides an additional interpretation as the prior and posterior a each step of objective
digtributions of units or plants anong dl with comparable histories. We would not expect this
probability interpretation to be robust to departures from serid independence or normdlity or

from poor estimation of s 2 or s 2. However, more casud usage of this theory, consistent with

current EWMA usage, should be quite robust.

Box and Lucefio (1997) comment extensively about an EWMA as a forecast for an
integrated moving average IMA(O, 1, 1) process. The present development is asymptotically
equivdent to this, and we recommend traditiond EWMAS for applications where the trangents
are unimportant and the dtuation does not judtify the effort of attempting to access other data
such asthe digribution at first use, gage R & R studies, and reliability data.

The present study was conducted as part of alarger project to demondtrate the value of
Bayesan sequentid updating as a foundationa principle for designing monitors (Graves et d.
2001). To detect an abrupt jump, this principle produces a “ Bayes-adjusted Cusum” (Graves,
Bisgaard and Kulahci 2002a). If both mean and variability migrate over time, the prior for the
next observation involves EWMAS for both mean and variance (Graves, Bisgaard and Kulachi
2002b). For noisy observations linearly related to a multivariate date vector, Bayesan

sequentid updating produces Kaman filters that can isolate as well as detect faults (Graves et
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a. 2001). In applications where the output of different sensors should be related, this can dlow
one sensor to check another, supporting fault isolation without duplicating sensors and
increasing per-unit cogts. If the migration rate is zero, this agorithm degenerates to ordinary
least squares regression. Thiswork generdizes Pole, West and Harrison (1994), West (1986),
West and Harrison (1986), Gelb (1999), Gordon and Smith (1988, 1990), Harrison and Lai

(1999), Lindley and Smith (1972), and others,
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Figure 1. Bayesan Sequential Updating with a Random Walk

Step 1. Observation, Updating knowledge (j
using Bayes' Theorem
1.1. Preparing
a. Predictive distribution
b. Posterior variance
c. Kaman gain
1.2. Updating
a. Prediction error
b. Posterior mean

Step 2. Transition and the prior for the next
observation

2.1. Posterior mean

2.2. Posterior variance >
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Figure2. Bayesan EWMA lteration

Step 1. Observation, updating knowledge usng Bayes theorem
1.0. Observation model

a Prior (X | Dit) ~ N(Xget, S ;) (from step 2) (7
b. Observation Ve [ %) ~N(x, s 7) @)
1.1. Preparing
a Predictivedistriibution (v | Dit) ~ N(fi, S 3.1,
fi=Xyt1, S 5;.1 =S t2|t-l +s; ©)
b. Posterior information and variance s ° =s 7, +s ;2 (11)
c. Kdmangan Ki=sgs (13)
1.2. Updating
a. Prediction error a=%-f (15)
b. Posterior mean Xg = %1 YK G (16)
Step 2. Transition and the prior for the next observation
2.0. Modéd (Xern | X)) ~N(Xe, S 2) (1)
2.1. Posterior mean Xes1jt = Xijt a7)
2.2. Posterior variance Sip =Sgq *tSi (18)
In sum: Combining (14) - (16):
Xt+ut = Xt|t-l + Kt (yt - Xt|t-l): (1_ Kt)xt|t-l + Ktyt (19)
where
< =yl ek ) or=s s, (21
® K, =(r 2/2){«/1+i4/r 2). 1} (22)
For confidence limits, combine (11) and (18):
sy =Byits,’) +s2
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Figure3. A Bayesan EWMA
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Figure 5. Equivalence between EWMA Weight and Relative Migration Rate
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Table1l. Bayesan EWMA Computations

Prediction X1 for time (t + 1) giveninformation D; = {y;, Vi1, ...}, available at time
t:
Xerat = (L= KX + Keyr = Xgeea + Ke&, & = (Vi — Xyje-1) (19)
Weight on the |ast observation (Kaman gain):
Ke=1/{1+[1(r?+Key)] } (21)
where

r?=s?/s? =(migration variance) / (measurement variance)

and
K1 = 1 with no prior knowledge of theinitia condition of the plart

Confidence bounds on x; are obtained from (X; | D—1) ~ N(X¢jt1, S tlzt_l), where

sy =lilits.?) +s2 (11) & (18)
Evaluate prediction error e reaiveto
var(y, | De1) = s t|2t-l +s €)
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Table2. Univariate Bayesan Sequential Updating: Illustrative Calculations
Table2.1. Scenario Simulated
Manufacturing distribution
Mean  Vaiance  Standard Deviation  Information

X1j0 S 10 S 10 S 1o
0 0.1 0.316 10
Observation error Vaiance  Standard Deviation  Information
sy S, s,
0.01 0.1 100
Migration Mean  Vaiance  Standard Deviation  Information
m s S, S
“Actud”  0.03 0 0 ¥
Assumed O 0.001 0.0316 1,000
Table 2.2. Illusgtrative Calculations
Smulated Prior from Previous Step 2 Intermediate Computationsin Step 1
True Observation Posterior Kaman|Prediction
State Y = Mean Vaiance Information|Information Variance| Gan Error
Time Xt Xe + Vi Xi-1 S t|2t—1 S t_|t2—1 S t_|t2 S t|2t K &
eqn® (1) @) 1y (19 (11) (13)  (19)+
[+(16)] )
1 -0.103 -0.063 0 0.1000 10.0 | 1100 0.00909 0.909 -0.063
2 -0.073 -0.097 |-0.057 0.0101 99.1 199.1 0.00502 0.502 -0.040
3 |-0.043 -0.084 |-0.077 0.0060 166.0 | 266.0 0.00376 0.376 —0.007
19 0.437 0.497 0.396 0.0037 270.2 | 370.2 0.00270 0.270 0.101
20 0.467 0.698 0.423 0.0037 270.2 | 370.2 0.00270 0.270 0.275
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21 | 0.497 | 0.497 0.0037 270.2 |
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Figure Captions

Figure 1. Bayesan Sequentid Updating with a Random Walk

Figure 2. Bayesan EWMA lteration

Figure 3. A Bayesan EWMA

Figure4. Kdman Gainfor EWMA vs. Time

Figure 5. Equivaence between EWMA Weight and Relative Migration Rate
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